CHAPTER 8

Channel Coding:
Part 3

Information From other
source sources
Message Channel
symbols symbols
Source Channel Multi- Pulse Bandpass| Freq- Multipie X
Format encode 4] Encrypt encode plex modulate| modulatefl | uency =¥ access i
spread T
? 162) 5;(8)
Digital & ! A
|nrzyt c
! L L h(t) h
Synch- Digital Digital Channel ﬁ
stream ronization | Paseband bandpass impulse n
Digital waveform waveform response e
output !
m; . '
*’ u; 2(T) r(t)
f Demod- Freq- f R
Source Channel Demulti- Multiple
O~} Format [<§ Decrypt |« Detect ulate uency Y C
decode decode ple/x Z & Sample] despread access v
Message Channel
symbols symbols
. U Optional
Information To other 24 Op)
sink destinations [Essential

436

8.1 REED-SOLOMON CODES

Reed-Solomon (R-S) codes are nonbinary cyclic codes with symbols made up of
m-bit sequences, where m is any positive integer having a value greater than 2.
R-S (n, k) codes on m-bit symbols exist for all » and k for which

0<k<n<2"+2 (8.1)

where k is the number of data symbols being encoded, and # is the total number of
code symbols in the encoded block. For the most conventional R-S (#, k) code,

(nk) = (2" —1,2" —1—2r) (8.2)

where t is the symbol-error correcting capability of the code, and n — k = 2t is the
number of parity symbols. An extended R-S code can be made up with n = 2" or
n =2"+1, but not any further.

Reed-Solomon (R-S) codes achieve the largest possible code minimum dis-
tance for any linear code with the same encoder input and output block lengths.
For nonbinary codes, the distance between two codewords is defined (analogous to
Hamming distance) as the number of symbols in which the sequences differ. For
Reed-Solomon codes the code minimum distance is given by [1]

dyn=n—k+1 (8.3)

The code is capable of correcting any combination of ¢ or fewer errors, where ¢
obtained from Equation (6.44), can be expressed as

8.1 Reed-Solomon Codes 437

t:{dmmz-lJ:Ln;kJ (8:4)

where |x] means the largest integer not to exceed x. Equation (8.4) illustrates that

for the case of R-S codes, correcting ¢ symbol errors requires no more than 2¢

parity symbols. Equation (8.4) lends itself to the following intuitive reasoning. One

can say that the decoder has n — k redundant symbols “to spend,” which is twice the

amount of correctable errors. For each error, one redundant symbol is used to

locate the error, and another redundant symbol is used to find its correct value.
The erasure-correcting capability of the code is

p=dm,—1=n—k (8.5)

Simultaneous error-correction and erasure-correction capability can be
expressed by the requirement that

2ty <dg, <n-—k (8.6)

where « is the number of symbol error patterns that can be corrected, and vy is the
number of symbol erasure patterns that can be corrected. An advantage of nonbi-
nary codes such as a Reed-Solomon code can be seen by the following comparison.
Consider a binary (n, k) = (7, 3) code. The entire n-tuple space contains 2" = 27 =
128 n-tuples, of which 2 = 2*= 8 (or 1/16 of the n-tuples) are codewords. Next
consider a nonbinary (n, k) = (7, 3) code where each symbol comprises m = 3 bits.
The n-tuple space amounts to 2" = 2! = 2,097,152 n-tuples, of which 2" = 2° = 512
(or 1/4096 of the n-tuples) are codewords. When dealing with nonbinary symbols,
each made up of m bits, only a small fraction (i.e., 2" of the large number 2"™) of
possible n-tuples are codewords. This fraction decreases with increasing values
of m. The important point here is that, when a small fraction of the n-tuple space is
used for codewords, a large d,;, can be created.

Any linear code is capable of correcting n — k symbol erasure patterns if the
n — k erased symbols all happen to lie on the parity symbols. However, R-S codes
have the remarkable property that they are able to correct any set of n — k symbol
erasures within the block. R-S codes can be designed to have any redundancy.
However, the complexity of a high speed implementation increases with redun-
dancy. Thus, the most attractive R-S codes have high code rates (low redundancy).

8.1.1 Reed-Solomon Error Probability

The Reed-Solomon (R-S) codes are particularly useful for burst-error correction,
that is, they are effective for channels that have memory. Also, they can be used ef-
ficiently on channels where the set of input symbols is large. An interesting feature
of the R-S code is that as many as two information symbols can be added to an
R-S code of length n without reducing its minimum distance. This extended R-S
code has length n + 2 and the same number of parity check symbols as the original
code. From Equation (6.46), the R-S decoded symbol error probability, Pr. in
terms of the channel symbol error probability, p, can be written as follows [2]:

438 Channel Coding: Part 3 Chap. 8

1

Py

2M—q

(8.7)

2m—] : Y14 :
(j)pf(l—p)2 o

where ¢ is the symbol-error correcting capability of the code, and the symbols are
made up of m bits each.

The bit error probability can be upper bounded by the symbol error probabil-
ity for specific modulation types. For MFSK modulation with M = 2", the relation-
ship between Py and P as given in Equation (4.1 12) is repeated here:

PB om= 1

P 2" -1
Figure 8.1 shows P, versus the channel symbol error probability p, plotted

from Equations (8.7) and (8.8) for various t-error-correcting 32-ary orthogonal
Reed-Solomon codes with n = 31 (thirty-one 5-bit symbols per code block).

zzm—lj:tEH]

(8.8)

Figure 8.1 Pgversus p for 32-ary
srthogonal signaling and n = 31,
~error-correcting Reed-Solomon
zoding. (Reprinted with permission
‘rom Data Communications, Net-
works and Systems, ed. Thomas C.
Bartee, Howard W. Sams Com-
oany, Indianapolis, Ind., 1985,
0. 311. Originally published in J. P.

Bit error probability, Pg

10~2
||IIY\|I T |Hl|\|T

1 177714

1073

104

10-5

106

Lol SRR

1

Dol

Lol

Odenwaldet, Error Control Coding 10-7 PN
Handbook, M/A-COM LINKABIT, 10-1 10-2 10-3 10-4
inc., San Diego, Calif., July 15,
1976, p. 91) Channel symbol! error probability, p

8.1 Reed-Solomon Codes 439

Figure 8.2 shows Py versus E,/N, for such a coded system using 32-ary MFSK mod-
ulation and noncoherent demodulation over an AWGN channel {2]. For R-S
codes, error probability is an exponentially decreasing function of block length. n,
and decoding complexity is proportional to a small power of the block length [1].
The R-S codes are sometimes used in a concatenated arrangement. In such a

102 T T I R
L - i
10-3 t=2 =
g =4 E
B t=8 i
. L |
9
> 104 = -
2 r §
©
e} = a
9 | .
Q- —
S
S 1051 4
@ . .
10_6 = =
107 1 | | |
3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Ey/Ny {dB)

Figure 8.2 Bit error probability versus E,/N, performance of several
n = 31, terror correcting Reed-Solomon coding systems with 32-ary
MFSK modulation over an AWGN channel. (Reprinted with permission
from Data Communications, Networks, and Systems, ed. Thomas C.
Bartee, Howard W. Sams Company, Indianapolis, Ind., 1985, p. 312.
Originally published in J. P. Odenwalder, Error Control Coding Hand-
book, M/A-COM LINKABIT, Inc. San Diego, Calif., July 15, 1976, p. 92.)

440 Channel Coding: Part 3 Chap. 8

system, an inner convolutional decoder first provides some error control by operat-
ing on soft-decision demodulator outputs; the convolutional decoder then presents
hard-decision data to the outer Reed—Solomon decoder, which further reduces the
probability of error. In Sections 8.2.3 and 8.3 we discuss further the use of concate-
nated and R-S coding as applied to the compact disc (CD) digital audio system.

8.1.2 Why R-S Codes Perform Well Against Burst Noise

Consider an (n, k) = (255, 247) R-S code, where each symbol is made up of m = 8
bits (such symbols are typically referred to as bytes). Since n — k = 8. Equation (8.4)
indicates that this code can correct any 4 symbol errors in a block of 255. Imagine
the presence of a noise burst, lasting for 25-bit durations and disturbing one block
of data during transmission, as illustrated in Figure 8.3. In this example, notice that
a burst of noise that lasts for a duration of 25 contiguous bits, must disturb exactly 4
symbols. The R-S decoder for the (255, 247) code will correct any 4-symbol errors
without regard to the type of damage suffered by the symbol. In other words, when
a decoder corrects a byte, it replaces the incorrect byte with the correct one,
whether the error was caused by one bit being corrupted or all 8 bits being cor-
rupted. Thus, if a symbol is wrong, it might as well be wrong in all of its bit posi-
tions. This gives a R-S code a tremendous burst-noise advantage over binary
codes, even allowing for the interleaving of binary codes. In this example, if the
25-bit noise disturbance had occurred in a random fashion rather than as a contigu-
ous burst, it should be clear that there would then be many more than 4 symbols
affected (as many as 25 symbols might be disturbed). Of course, that would be
beyond the capability of the (255, 247) code.

8.1.3 R-S Performance as a Function of Size, Redundancy,
and Code Rate

For a code to successfully combat the effects of noise, the noise duration has to rep-
resent a relatively small percentage of the codeword. To ensure that this happens
most of the time, the received noise should be averaged over a long period of time,
reducing the effect of a sudden or unusual streak of bad luck. Hence, one can ex-
pect that error-correcting codes become more efficient (error performance im-
proves) as the code block size increases, making R-S codes an attractive choice

25-Bit noise burst

SYMB 1 SYMB 2 SYMB 3 SYMB 4 SYMB 5 SYMB 6

OK HIT HIT HIT HIT OK

Figure 8.3 Data block disturbed by 25-bit noise burst.

8.1 Reed-Solomon Codes 441

I T
1075 - =
z - .
B - .
©
0 - .
° i R-S (32, 28) i
o m=>5
§ 10~10 |]
$ - -
S = _
3 " R-S(64,56) 1
g B m=6]
O 10-75 _
- R-S (256, 224) |
m=28
] R-S (128,112) i
i Mo |
10—20 | | | |
10-6 10-5 104 103 10-2

Random channel-bit-error probability

Figure 8.4 Reed-Solomon, rate 7/8, decoder performance as a
function of symbol size.

whenever long block lengths are desired [3]. This is seen by the family of curves in
Figure 8.4, where the rate of the code is held at a constant 7/8, while its block size
increases from n = 32 symbols (with m = 5 bits per symbol) to n =256 symbols (with
m = 8 bits per symbol). Thus, the block size increases from 160 bits to 2048 bits.

As the redundancy of an R-S code increases (lower code rate), its implemen-
tation grows in complexity (especially for high speed devices). Also, the bandwidth
expansion must grow for any real-time communications application. However, the
benefit of increased redundancy, just like the benefit of increased symbol size, is
the improvement in bit-error performance, as can be seen in Figure 8.5, where the
code length n is held at a constant 64, while number of data symbols decreases from
k =60 to k = 4 (redundancy increases from 4 symbols to 60 symbols).

Figure 8.5 represents transfer functions (output bit-error probability versus
input channel symbol-error probability) of hypothetical decoders. Because there is
no system or channel in mind {only an output-versus-input of a decoder), one
might get the idea that the improved error performance versus increased redun-
dancy is a monotonic function that will continually provide system improvement
even as the code rate approaches zero. However, this is not the case for codes oper-
ating in a real-time communication system. As the rate of a code varies from
minimum to maximum (0 to 1), it is interesting to observe the effects shown in

442 Channel Coding: Part 3 Chap. 8

10-90

2z 10° k=60 =
z - .
M |

L
e - k=56 s
o B |
2 10101 .

[1h]
= T k=32 7
JIJ - _
5 L i

a
8 10—15 k=48 1
I k=4 |

k=44
10-20 | |

104 10-3 10-2 10~

Random channel-bit-error probability

Figure 8.5 Reed-Solomon (64, k) decoder performance as a function
of redundancy.

Figure 8.6. Here, the performance curves are plotted for BPSK modulation and an
R-S (31, k) code for various channel types. Figure 8.6 reflects a real-time commu-
nication system, where the price paid for error-correction coding is bandwidth ex-
pansion by a factor equal to the inverse of the code rate. The curves plotted show
clear optimum code rates which minimize the required E,/N [4]. The optimum
code rate is about 0.6 to 0.7 for a Gaussian channel, 0.5 for a Rician-fading channel
(with the ratio of direct to reflected received signal power, K = 7 dB), and 0.3 for a
Rayleigh-fading channel. (Fading channels are treated in Chapter 15.) Why is there
an E,/N, degradation for very large rates (small redundancy) and very low rates
(large redundancy)? It is easy to explain the degradation at high rates compared
with the optimum rate. Any code generally provides a coding gain benefit; thus, as
the code rate approaches unity (no coding), the system will suffer worse error per-
formance. The degradation at low code rates is more subtle because in a real-time
communication system using both modulation and coding, there are two mecha-
nisms at work. One mechanism works to improve error performance, and the other
works to degrade it. The improving mechanism is the coding; the greater the redun-
dancy, the greater will be the error-correcting capability of the code. The degrading
mechanism is the energy reduction per channel symbol (compared with the data
symbol) which stems from the increased redundancy (and faster signaling in a
real-time communication system). The reduced symbol energy causes the demodu-

8.1 Reed-Solomon Codes 443

Ey/Ny (dB) necessary for P, = 105

20

15

-
o

Error-decoding

—— == Error/erasure-decoding

1
7’

Rician channel
K=7dB

~~~~~~

Gaussian
channel

: ' ' ' Figure 8.6 BPSK pius Reed-Solomon
0.2 0.4 0.6 0.8 1 (31, k) decoder performance as a function of
Code rate code rate.

lator to make more errors. Eventually, the second mechanism wins out, and thus, at
very low code rates the system experiences error-performance degradation.

Let us see if we can corroborate the error performance versus code rate in
Figure 8.6 with the curves in Figure 8.2. The figures are really not directly compara-
ble because the modulation is BPSK in Figure 8.6, while it is 32-ary MFSK in Fig-
ure 8.2. However, perhaps we can verify that R-S error performance-versus-code
rate exhibits the same general curvature with MFSK modulation as it does with
BPSK. In Figure 8.2, the error performance over an AWGN channel, improves as
the symbol error-correcting capability ¢ increases from t =1 to 7 = 4; the t = 1 and
¢ = 4 cases correspond to R-S (31, 29) and R-S (31, 23) with code rates of 0.94 and
0.74, respectively. However at ¢ = 8, which corresponds to R-S (31, 15) with code
rate equal to 0.48, the error performance at Py = 10~ degrades by about 0.5 dB of
E,/N,, compared with the ¢ = 4 case. From Figure 8.2, we can conclude that if we
were to plot error performance versus code rate, the curve would have the same
general shape as it does in Figure 8.6. Note that this manifestation cannot be
gleaned from Figure 8.1, since that figure represents a decoder transfer function,
which provides no information about the channel and the demodulation. There-

444 Channel Coding: Part 3 Chap. 8




fore, of the two mechanisms at work in the channel, the Figure 8.1 transfer function
only presents the output-versus-input benefits of the decoder, and displays nothing
about the loss of energy as a function of lower code rate. More is said about choos-
ing a code in concert with a modulation type in Section 9.7.7.

8.1.4 Finite Fields

In order to understand the encoding and decoding principles of nonbinary codes.
such as a Reed-Solomon (R-S) codes, it is necessary to venture into the area of
finite fields known as Galois Fields (GF). For any prime number p there exists a
finite field denoted GF(p), containing p elements. It is possible to extend GF(p) to
a field of p™ elements, called an extension field of GF(p), and denoted by GF(p™),
where m is a nonzero positive integer. Note that GF(p™) contains as a subset the
clements of GF(p). Symbols from the extension field GF(2™) are used in the
construction of Reed-Solomon (R-S) codes.

The binary field GF(2) is a subfield of the extension field GF(2"), much the
same way as the real number field is a subfield of the complex number field. Be-
sides the numbers 0 and 1, there are additional unique elements in the extension
field that will be represented with a new symbol o. Each nonzero element in
GF(2") can be represented by a power of o. An infinite set of clements, F, is
formed by starting with the elements {0, 1, o} and generating additional elements
by progressively multiplying the last entry by o which yields

F=10,1,q, o2, o, 1 =40, ol el o, (8.9)

To obtain the finite set of elements of GF(2™) from F, a condition must be im-
posed on F so that it may contain only 2" elements and is closed under multiplica-
tion. The condition that closes the set of field elements under multiplication is
characterized by the irreducible polynomial

@+ 1=0
or equivalently,
@D =1=¢q° (8.10)

Using this polynomial constraint, any field element that has a power equal to
or greater than 2 — 1 can be reduced to an element with a power less than 27 — 1 as
follows:

Q@) = Q@M gl = gt (8.11)

Thus, Equation (8.10) can be used to form the finite sequence F** from the in-
finite sequence F, as follows:

Ff=1{0,1,a,0% o %o a2} (8.12)

2’”2012}

= 0 1 2 ... -
“{0,0L,OL,OL, , , 00, a0, an,

Therefore, it can be seen from Equation (8.12) that the elements of the finite
field GF(2)™ are given by

8.1 Reed-Solomon Codes 445



GF(2") = {0,a", o', o2, -+, " 7%} (8.13)

8.1.4.1 Addition in the Extension Field GF(2™)

Each of the 2™ elements of the finite field GF(2") can be represented as a
distinct polynomial of degree m — 1 or less. The degree of a polynomial is the value
of its highest order exponent. We denote each of the nonzero elements of GF(2™)
as a polynomial a,(X), where at least one of the m coefficients of a,(X) is nonzero.
Fori=0,1,2,...,2" -2,

ai - a,-(X) = ai_yo + a“X+ a[.2X2 + -+ al'_,”,IX”,71 (814)

Consider the case of m = 3, where the finite field is denoted GF(2*). Figure
8.7 shows the mapping (developed later) of the seven elements {a'} and the zero el-
ement, in terms of the basis elements {X°, X', X?} described by Equation (8.14).
Since Equation (8.10) indicates that «” = o, there are seven nonzero elements or a
total of eight elements in this field. Each row in the Figure 8.7 mapping comprises a
sequence of binary values representing the coefficients o, ¢, a; ;. and ¢, , in Equa-
tion (8.14). One of the benefits of using extension field elements {«'} in place of bi-
nary elements is the compact notation that facilitates the mathematical
representation of nonbinary encoding and decoding processes. Addition of two ele-
ments of the finite field is then defined as the modulo-2 sum of each of the polyno-
mial coefficients of like powers, i.e.,

of +od = (ag+a; ) +(a, + @ )X+t (@ g, )X (815)

8.1.4.2 A Primitive Polynomial is Used to Define the Finite Field

A class of polynomials called primitive polynomials, is of interest because
such functions define the finite fields of GF(2™) which in turn are needed to define
R-S codes. The following condition is necessary and sufficient to guarantee that a

Basis elements

X0x" x?

F 0 0 0O
a1 0 0
e
I o 0 1 0
d

a2 0 0 1
? a1 1 0
e o 0 11
m
e 05 1 1 1
" af 1 0 1
t ; Figure 8.7 Mapping field elements in terms of basis elements
s o 1 00 for GF(8) with AX) =1+ X+ X2

446 Channel Coding: Part 3 Chap. 8




polynomial is primitive. An irreducible polynomial, f(X), of degree m is said to be
primitive, if the smallest positive integer n for which f(X) divides X"+ lisn=2"—1.
Note that an irreducible polynomial is one that cannot be factored to yield lower
order polynomials, and that the statement A divides B means that A divided into B
yields a nonzero quotient and a zero remainder. Polynomials will usually be shown
low order-to-high order. Sometimes, it is convenient to follow the reverse format
(e.g., when performing polynomial division).

Example 8.1 Recognizing a Primitive Polynomial

Based on the foregoing definition of a primitive polynomial, determine whether the
following irreducible polynomials are primitive:

(a) T+ X+X*
b)) I+X+ X+ X+ X

Solution

(a) We can verify whether or not this degree m = 4 polynomial is primitive by deter-
mining if it divides X" + 1 = X"~V + 1 = X + 1, but does not divide X" + 1, for
values of n in the range of 1 < n < 15. Tt is easy to verify that 1 + X + X* divides
X" + 1, and after repeated computations it can be verified that 1+ X + X* will not
divide X" + 1 for any n in the range of 1 < n < 15. Therefore,
1 + X+ X*is a primitive polynomial.

(b) It is simple to verify that the polynomial T+ X + X> + X° + X* divides X'* + 1. Test-
ing to see if it will divide X” + 1 for some # that is less than 15, yields the fact that it
also divides X° + 1. Thus, although 1 + X + X? + X° + X" is irreducible, it is not
primitive.

8.1.4.3 The Extension Field GF(2*)

Consider an example involving a primitive polynomial and the finite field that
it defines. Table 8.1 contains a listing of some primitive polynomials. We choose
the first one shown, f(X) = 1 + X + X which defines a finite field GF(2"), where
the degree of the polynomial is m = 3. Thus, there are 2” = 2° = 8 elements in the
field defined by f(X). Solving for the roots of f(X) means that the values of X that
correspond to f(X) = 0 must be found. The familiar binary elements 1 and 0 do not
satisfy (are not roots of) the polynomial f(X) =1+ X+ X3, since f(1) =1 and f(0) =
1 (using modulo-2 arithmetic). Yet, a fundamental theorem of algebra states that a
polynomial of degree m must have precisely m roots. Therefore for this example,
f(X) =0 must yield 3 roots. Clearly a dilemma arises, since the 3 roots do not lie in
the same finite field as the coefficients of f(X). Therefore, they must lie some-
where else; the roots lie in the extension field GF(2°). Let o, an element of the ex-
tension field, be defined as a root of the polynomial f(X). Therefore, it is possible
to write

1l+a+a®=0 (8.16)

8.1 Reed-Solomon Codes 447



TABLE 8.1 Some Primitive Polynomials

m m

3 1+X+X° 14 T+ X+ X+ X104 x4
4 1+X+Xx* 15 1+X+X%

5 1+ X2+ X° 16 T+ X+ X+ XY+ X
6 1+X+X° 17 1T+ X+ X7

7 1+ X3+ X7 18 1+ X7+ X8

8 1+ X+ X+ X+ X 19 1+ X+ X+ X+ XY
9 1+ x4+ X° 20 1+ X+ X

10 1+ X+ Xx° 21 1+ X2+ X

11 1+ X2+ x1 2 1+ X+ X7

12 T+ X+ X+ X0+ X2 23 1+ X + X+

13 1+ X+ X+ X+ X" 24 1+ X+ X+ X +X¥

Since in the binary field +1 = -1, then o can be represented as
=1+a (8.17)

Thus, o is expressed as a weighted sum of a-terms having lower orders. In fact, all
powers of « can be so expressed. For example, consider

a=ad=a-(1+a)=a+d (8.18a)
Now consider
o =a-a'=a-(a+a) =+’ (8.18b)
From Equations (8.17) and (8.18b), we obtain
o =1+a+a (8.18¢)

Now, using Equation (8.18c), we obtain
d=add=a-l+a+a))=a++d=1+d (8.18d)
And using Equation (8.18d), we obtain

=aa=a-(l+a)=a+aP=1=a" (8.18e)

Note that o’ =", and therefore, the eight finite field elements of GF(2°) are
{0, 0% o, o, o, o, &, o’} (8.19)

The mapping of field elements in terms of basis elements, described by Equa-
tion (8.14) can be demonstrated with the linear feedback shift register (LFSR) cir-
cuit shown in Figure 8.8. The circuit generates (with m = 3) the 2" - 1 nonzero
elements of the field, and thus summarizes the findings of Figure 8.7 and Equations
(8.17) through (8.19). Note that in Figure 8.8, the circuit feedback connections cor-
respond to the coefficients of the polynomial f(X) =1+ X + X", just like for binary
cyclic codes. (See Section 6.7.5.) By starting the circuit in any nonzero state, say 1 0
0. and performing a right-shift at each clock time, it is possible to verify that each of

448 Channel Coding: Part 3 Chap. 8




Figure 8.8 Extension field elements
can be represented by the contents of
a binary linear feedback shift register
{LFSR) formed from a primitive poly- >

nomial.

X0 X X? X3

the field elements shown in Figure 8.7 (except the all-zeros element) will cyclicly
appear in the stages of the shift register. Two arithmetic operations, addition and
multiplication, can be defined for this GF(2°) finite field. Addition is shown in
Table 8.2, and multiplication is shown in Table 8.3 for the nonzero elements only.
The rules of addition follow from Equations (8.17) through (8.18e), and can be ver-
ified by noticing in Figure 8.7 that the sum of any field elements can be obtained by
adding (modulo-2) the respective coefficients of their basis elements. The multipli-
cation rules in Table 8.3 follow the usual procedure in which the product of the
field elements is obtained by adding their exponents modulo-(2” — 1), or for this
case, modulo-7.

TABLE 8.2 Addition Table for GF(8) with £(X) = 1 + X+ X°

o ol o o3 ot o of
o’ 0 o’ af ol o’ o o
o o 0 o a! o? ol o’
o af o 0 o’ ol o’ o
e o o o 0 o o2 ot
o o’ o’ al of 0 o o’
o’ o af o o o’ 0 ol
af o’ o’ a’ ot o al 0

TABLE 8.3 Multiplication Table for GF(8) with f(X) =1+ X+ X°

(XO OLI OL2 OL3 OL4 OLS (fo
OL“ (X() 0(1 OLZ OL3 OL4 0‘5 ()Lh
()Ll OL] 0L2 0(3 ()L4 OLS OLﬁ OL“
OLZ ()Lz 0L3 0L4 OLS 01.6 OLO OLI
(13 0(3 0L4 OLS 01.6 OL“ (Xl 01.2
OL4 0(4 (XS (16 OL“ ()Ll OLZ OL3
()LS 0(5 0(6 OL() 0L1 OL2 OL3 0L4
OL(’ OLﬁ 0(() 0(1 OLZ ()L3 (X4 0[5

8.1.4.4 A Simple Test to Determine if a Polynomial is Primitive

There is another way of defining a primitive polynomial that makes its verifi-
cation relatively easy. For an irreducible polynomial to be a primitive polynomial.
at least one of its roots must be a primitive element. A primitive element is one that
when raised to higher order exponents will yield all the nonzero elements in the
field. Since the field is a finite field, the number of such elements is finite.

8.1 Reed-Solomon Codes 449



Example 8.2 A Primitive Polynomial Must Have at Least one Primitive Element

Find the m = 3 roots of f(X) =1+ X + X?, and verify that the polynomial is primitive
by checking that at least one of the roots is a primitive element. What are the roots?
Which ones are primitive?

Solution

The roots will be found by enumeration. Clearly, o” = 1 is not a root because fla") = 1.
Now use Table 8.2 to check if a o' is a root. Since f(a) =1 +a+a’ =1+a’=0, then «
is a root. Now check if «® is a root. f(a?) =1+ o>+ a® =1+ «” = 0. Hence, o? is a root.
Now check if o’ is aroot. f(a¥) =1+’ +a’=1+a’+a’=1+a =a*#0. Hence. o’ is
notaroot. Is ot aroot? fla) =a?+a*+ 1=’ +a*+1=1+a"=0. Yes. it is a root.
Hence, the roots of fAX) =1+ X + X°, are a, o, and &*. It is not difficult to verify that
starting with any one of these roots and generating higher order exponents yields all of
the 7 nonzero elements in the field. Hence, each of the roots is a primitive element.
Since our verification requires that at least one root be a primitive element. the poly-
nomial is primitive.

A relatively simple method to verify if a polynomial is primitive can be de-
scribed in a manner that is related to this example. For any given polynomial under
test, draw the LFSR, with the feedback connections corresponding to the polynomial
coefficients as shown by the example of Figure 8.8. Load into the circuit-registers any
nonzero setting, and perform a right shift with each clock pulse. If the circuit generates
each of the nonzero field elements within one period, then the polynomial that defines
this GF(2™) field is a primitive polynomial.

8.1.5 Reed-Solomon Encoding

Equation (8.2) expresses the most conventional form of Reed-Solomon (R-S)
codes in terms of the parameters n, k, ¢, and any positive integer m > 2. Repeated
here, that equation is

(n,ky=(@" —1,2" =1 —2r) (8.20)

where n — k =2t is the number of parity symbols, and ¢ is the symbol-error correct-
ing capability of the code. The generating polynomial for an R-S code takes the fol-
lowing form:

gX)=go+ g X+ g X+ 4 gy X' + X (8.21)

The degree of the generator polynomial is equal to the number of parity
symbols. R-S codes are a subset of the BCH codes described in Section 6.8.3 and
Table 6.4. Hence, it should be no surprise that this relationship between the degree
of the generator polynomial and the number of parity symbols holds just as it does
for BCH codes. This can be verified by checking any of the generator polynomials
in Table 6.4. Since the generator polynomial is of degree 2¢, there must be precisely
2t successive powers of « that are roots of the polynomial. We designate the roots
of g(X) as: o, o%, ..., a”. It is not necessary to start with the root «; starting with
any power of « is possible. Consider as an example, the (7, 3) double-symbol error
correcting R-S code. We describe the generator polynomial in terms of its 27 =
n—k =4 roots, as follows:

450 Channel Coding: Part 3 Chap. 8




g(X) = (X— o) (X— o) (X— o) (X— o)
=X’ —(a+ o)X+ )X — (@@ + o) X+ o)
= (X? - o*X+ o) (X - "X+ oY)
=X - (@ +a) X+ (@@ + ) X - (0t o) X+ o
=X*'— X3+ "X - odX + o

Following the format of low order to high order, and changing negative signs to
positive, since in the binary field + 1 =—1, the generator g(X') can be expressed as

g(X) =+ alX+ "X + X + X* (8.22)

8.1.5.1 Encoding in Systematic Form

Since R-S codes are cyclic codes, encoding in systematic form is analogous to
the binary encoding procedure established in Section 6.7.3. We can think of shifting
a message polynomial m(X) into the rightmost k stages of a codeword register and
then appending a parity polynomial p(X) by placing it in the leftmost n — k stages.
Therefore we multiply m(X) by X" %, thereby manipulating the message polyno-
mial algebraically so that it is right-shifted n — k positions. In Chapter 6, this is
shown in Equation (6.61) in the context of binary encoding. Next, we divide X"~ k
m(X) by the generator polynomial g(X ), which is written as

X" m(X) = q(X) g(X) + p(X) (8.23)

where q(X) and p(X) are quotient and remainder polynomials, respectively. Asin the
binary case, the remainder is the parity. Equation (8.23) can also be expressed as

p(X) = X" *m(X) modulo g(X) (8.24)

The resulting codeword polynomial U(X), shown in Equation (6.64), is
rewritten as

U(X) = p(X) + X" *m(X) (8.25)
We demonstrate the steps implied by Equations (8.24) and (8.25) by encoding

the three-symbol message

010 110 111
[ S

— 3 5
Otl o o

with the (7, 3) R-S code whose generator polynomial is given in Equation (8.22).
We first multiply (upshift) the message polynomial o' + &’X + &’ X by X" % = X*,
yielding o' X* + o X° + &> X%, We next divide this upshifted message polynomial by
the generator polynomial in Equation (8.22), o® + a'X + o’X? + o’ X* + X *. Polyno-
mial division with nonbinary coefficients is more tedious than its binary counter-
part (sece Example 6.9), because the required operations of addition (subtraction)
and multiplication (division) must follow the rules in Tables 8.2 and 8.3,

8.1 Reed-Solomon Codes 451



respectively. It is left as an exercise for the reader to verify that this polynomial di-
vision results in the following remainder (parity) polynomial:

pX) =’ + 2 X+ o X7 + X
Then, from Equation (8.25), the codeword polynomial can be written as

UX) =o' + X+ X + X + o' X' + o’X° + o'X°

8.1.5.2 Systematic Encoding with an (n — k)-Stage Shift Register

Using circuitry to encode a 3-symbol sequence in systematic form with the
(7, 3) R-S code described by g(X) in Equation (8.22) requires the implementation
of a LFSR, as shown in Figure 8.9. It can be easily verified that the multiplier terms
in Figure 8.9 taken from left to right correspond to the coefficients of the polyno-
mial in Equation (8.22) (low order to high order). This encoding process is the non-
binary equivalent of the cyclic encoding that was described in Section 6.7.5. Here,
corresponding to Equation (8.20), the (7, 3) R-S nonzero codewords are made up
of 2" — 1 =7 symbols, and each symbol is made of m = 3 bits.

Notice the similarity amongst Figures 8.9, 6.18, and 6.19. In all three cases the
number of stages in the shift register is # — k. The figures in Chapter 6 illustrate
binary examples where each shift-register stage holds 1 bit. Here the example is
nonbinary, so that each stage in the shift register of Figure 8.9 holds a 3-bit symbol.
In Figure 6.18, the coefficients labeled g, g,, . . . are binary. Therefore, they take on
values of 1 or 0, simply dictating the presence or absence of a connection in the
LFSR. However in Figure 8.9, since each coefficient is specified by 3-bits, it can
take on one of 8 values.

The nonbinary operation implemented by the encoder of Figure 8.9, forming
codewords in a systematic format, proceeds in the same way as the binary one. The
steps can be described as follows:

1. Switch 1 is closed during the first k clock cycles to allow shifting the message
symbols into the (n — k)-stage shift register.

X0 X! X2 X3 X4
Bl Feedback
o o® o3 Switch 1

D Output

symbot

sequence
Input message symbol sequence
010 110 M1 — Switch 2

ol os ob
Figure 8.9 LFSR Encoder for a (7,3) R—S code.

452 Channel Coding: Part 3 Chap. 8




2. Switch 2 is in the down position during the first k clock cycles in order to
allow simultaneous transfer of the message symbols directly to an output
register (not shown in Figure 8.9).

3. After transfer of the kth message symbol to the output register, switch 1 is
opened and switch 2 is moved to the up position.

4. The remaining (n — k) clock cycles clear the parity symbols contained in the
shift register by moving them to the output register.

5. The total number of clock cycles is equal to n, and the contents of the output
register is the codeword polynomial p(X) + X"~ *m(X), where p(X) repre-
sents the parity symbols, and m(X) the message symbols in polynomial form.

We use the same symbol sequence that was chosen as a test message in
Section 8.1.5.1, and we write

010 110 111
—— e e
0Ll 0(3 OLS

where the rightmost symbol is the earliest symbol, and the rightmost bit is the
earliest bit. The operational steps during the first k = 3 shifts of the encoding circuit
of Figure 8.9 are as follows:

CLOCK
INPUT QUEUE CYCLE REGISTER CONTENTS FEEDBACK
al o’ o’ 0 0 0 0 0 o’
al o’ 1 o af o’ al o’
ol 2 o’ 0 o? o? o
— 3 o’ o? ot al —

After the third clock cycle, the register contents are the 4 parity symbols, o,
o2, of, and °, as shown. Then, switch 1 of the circuit is opened, switch 2 is toggled
to the up position, and the parity symbols contained in the register are shifted to
the output. Therefore the output codeword, written in polynomial form, can be ex-
pressed as

U(X) = iunX"

Ux) = o + o2 X + ot X2 + ofX3 + ol Xt + CX° + oCXC (8.26)
= (100) + (001) X + (011) X* + (101) X? + (010) X* + (110) X* + (111) X

The process of verifying the contents of the register at various clock cycles is some-
what more tedious than in the binary case. Here, the field elements must be added
and multiplied by using Table 8.2 and Table 8.3, respectively.

The roots of a generator polynomial g(X ) must also be the roots of the code-
word generated by g(X ), because a valid codeword is of the form

U(X) = m(X) g(X) (827)

8.1 Reed-Solomon Codes 453



Therefore an arbitrary codeword, when evaluated at any root of g(X'), must
yield zero. It is of interest to verify that the codeword polynomial in Equation
(8.26) does indeed yield zero when evaluated at the 4 roots of g(X). In other

words, this means checking that

U(a)

U(e?) = U(@’) =U() =0

Evaluating each term independently yields

U(a) =

R R R R
wn

Il
R R R R

[*8)

+

W o= o
R L R R
i8] =) (5
i+ +

R R Q R

fan T el
FH++ A+ o+
R R R R
=
I+ + +

—

[

L I S e e |
I+ + +

R, R R, R

R R R R
[= N A T N e )
R R R R
DN N D
I+ + +

o+ o'+ o+ o+
@’ +a?+ o+ o + o
af + ot

0

of + a2+ o + o+ o
al+ o+ +al+ o’

o + ot

0

al® + o5 + a® + o' + o2
o+ o'+ o+ ot + ol
o’ + o

0

a2+ a4+ a7 + o+ o
& +at ot o+ al

o + ol

0

This demonstrates the expected results that a codeword evaluated at any root of

g(X') must yield zero.

8.1.6 Reed-Solomon Decoding

In Section 8.1.5, a test message encoded in systematic form using a (7, 3) R-S code,
resulted in a codeword polynomial described by Equation (8.26). Now, assume that
during transmission, this codeword becomes corrupted so that 2 symbols are
received in error. (This number of errors corresponds to the maximum error-
correcting capability of the code.) For this 7-symbol codeword example, the error
pattern can be described in polynomial form as

e(X) = é e, X" (8.28)
n=0

For this example, let the double-symbol error be such that

e(X) =0+ 0X+ 0X2 + o2X° + °X* + 0X° + 0X° (8.29)

= (000) + (000)X + (000)X? + (001)X* + (111)X* + (000)X> + (000).X°

454

Channel Coding: Part 3 Chap. 8




In other words, one parity symbol has been corrupted with a 1-bit error (seen
as o), and one data symbol has been corrupted with a 3-bit error (seen as o’). The
received corrupted-codeword polynomial r(X) is then represented by the sum of
the transmitted-codeword polynomial and the error-pattern polynomial as follows:

r(X) = UX) + e(X) (8.30)

Following Equation (8.30), we add U(X) from Equation (8.26) to e(X ) from
Equation (8.29) to yield

r(X) = (100) + (001)X + (011)X? + (100)X> + (101)X* + (110)X° + (111)X°
=+ X+ X+ X+ X + X+ X (8.31)

In this 2-symbol error-correction example, there are four unknowns—two
error locations and two error values. Notice an important difference between the
nonbinary decoding of r(X) that we are faced with in Equation (8.31) and the bi-
nary decoding that was described in Chapter 6. In binary decoding, the decoder
only needs to find the error locations. Knowledge that there is an error at a particu-
lar location dictates that the bit must be “flipped” from a 1 to a 0, or vice versa. But
here, the nonbinary symbols require that we not only learn the error locations, but
that we also determine the correct symbol values at those locations. Since there are
four unknowns in this example, four equations are required for their solution.

8.1.6.1 Syndrome Computation

Recall from Section 6.4.7, that the syndrome is the result of a parity check
performed on r to determine whether r is a valid member of the codeword set. If in
fact r is a member, then the syndrome S has value 0. Any nonzero value of S indi-
cates the presence of errors. Similar to the binary case, the syndrome S is made up
of n— k symbols, {S;} (i=1,...,n—k). Thus, for this (7, 3) R-S code, there are four
symbols in every syndrome vector; their values can be computed from the received
polynomial r(X). Note how the computation is facilitated by the structure of the
code, given by Equation (8.27) and rewritten as

UX) = m(X) g(X)

From this structure it can be seen that every valid codeword polynomial
U(X) is a multiple of the generator polynomial g(X). Therefore, the roots of g(X)
must also be the roots of U(X). Since r(X) = U(x) + e(X), then r(X) evaluated at
each of the roots of g(X) should yield zero only when it is a valid codeword. Any
nonzero result is an indication that an error is present. The computation of a syn-
drome symbol can be described as

S =r(X) =ro) i=1,,n—k (8.32)
X=al

where r(X) contains the postulated 2-symbol errors as shown in Equation (8.29). If

r(X) were a valid codeword, it would cause each syndrome symbol S; to equal 0.

For this example, the four syndrome symbols are found as follows:

8.1 Reed--Solomon Codes 455



Sl:l'(OL):OLO+OL3+OL6+OL3+OL10+OL8+OLU
=+ +a®+ o+ +al +at (8.33)
— 3
=«

S;=r(@®) =+ o' +a® +a® + ot +a o

o +at+al+ab+a+af+ (8.34)

I

3

Sy=r@) =a’+ o’ + o + o’ + o+ a® + o’
="+’ +at+al+at+at+ ol (8.35)
_ 6
=q

S4=l‘(a4)=0L0+a6+a12+a12+a22+a23+0¢29

o +al+a’+ o’ +al+ o’ +a (8.36)

=0

The results confirm that the received codeword contains an error (which we

inserted) since S = 0.

Example 8.3 A Secondary Check on the Syndrome Values

456

For the (7, 3) R-S code example under consideration, the error pattern is known since
it was chosen earlier. Recall the property of codes presented in Section 6.4.8.1
when describing the standard array. Each element of a coset (row) in the standard
array has the same syndrome. Show that this property is also true for the R-S code by
evaluating the error polynomial e(.X') at the roots of g(X) to demonstrate that it must
yield the same syndrome values as when r(X) is evaluated at the roots of g(X). In
other words, it must yield the same values obtained in Equations (8.33) through
(8.36).

Solution

X:ai
S;=r(e) = U(a) + e(e) = 0 + e(a)
From Equation (8.29), e(X) = o® X* + &® X*; therefore,
Si=e(@) =0 +a
= + o
S, =e(a?) = of + "
=al +af

Sy =e(a®) = ot + o
=o'+’

Channel Coding: Part 3 Chap. 8




S =e(a?) = o' + o
=a' +a’
=0
These results confirm that the syndrome values are the same, whether obtained by
evaluating e(X') at the roots of g(X ), or r(X) at the roots of g(X).

8.1.6.2 Error Location

Suppose there are v errors in the codeword at location X1, X2, . .. X». Then,
the error polynomial shown in Equations (8.28) and (8.29) can be written as

e(X)=€,-1Xj1+ ejzX’2+ +e/-VX"V (8.37)

The indices 1, 2, ..., v refer to the 1%, 2™ ..., v'! errors, and the index
j refers to the error location. To correct the corrupted codeword, each error value
€, and its location X’e, where €=1,2,...vmust be determined. We define an error
locator number as 3, = o/¢. Next, we obtain the n — k = 2f syndrome symbols by sub-

stituting o’ into the received polynomial fori=1,2, ..., 2¢:
S =r{a) = €, By + €, B, + -+ + e B.
S, = r{a?) :ejIB%+ejZB%+ e p? (8.38)

— () = 2 2 2
Sy =w(a”) =e; Bi' e, B + 0t BY

There are 2t unknowns (¢ error values and ¢ locations), and 2z simultaneous
equations. However, these 2¢ simultaneous equations cannot be solved in the usual
way because they are nonlinear (as some of the unknowns have exponents). Any
technique that solves this system of equations is known as a Reed-Solomon decod-
ing algorithm.

When a nonzero syndrome vector (one or more of its symbols are nonzero)
has been computed, it signifies that an error has been received. Next, it is necessary
to learn the location of the error or errors. An error-locator polynomial can be de-
fined as

o(X) = (1+ BX) (1 + BX) (1 + B, X) (8.39)
=1l+0X+0X+ - +0 X"

The roots of o(X ) are 1/8,, 1/B,, . . ., 1/B,. The reciprocal of the roots of o(X)

are the error-location numbers of the error pattern e(X). Then using autoregres-

sive modeling techniques [5], we form a matrix from the syndromes, where the first
t syndromes are used to predict the next syndrome. That is,

Sy AP S; S -1 S, gy =5,
S S3 Ss S, Si 41 g -1 =S
: : = : (8.40)
Si- S Sivr v Suz Sy 02 =S
S, Sier Siva o Sua Suo gy =Sy

8.1 Reed-Solomon Codes 457



We apply the autoregressive model of Equation (8.40) by using the largest
dimensioned matrix that has a nonzero determinant. For the (7. 3) double symbol
error-correcting R-S code, the matrix size is 2 x 2, and the model is written as

S Sif|o2| _ISs
|:S2 53} [o‘l} - {:54} (8.4])

o o 02] {a(’}
= 8.42
Lxs a6} |:0'] 0 ( )
To solve for the coefficients o; and o, of the error-locator polynomial o(X).

we first take the inverse of the matrix in Equation (8.42). The inverse of a matrix
[A] is found as follows:

cofactor [A]

Inv[A] =
WA= e A
Therefore,
ot o’
det [ 5 6} = o’a® — o’a’® = o’ + ! (8.43)
o o
=al+ o’ =0
o a5:| {ae OLS}
fact =| 5 8.44
cofac orLs =] (8.44)
and
a® o
o 045} Lcs ovJ [(x“ as}
I = =a 8.45
v [as o o’ Y let o (845)

2[0‘6 OLS:| |:0L8 OL7] |:OLI O(O:|
= Q = = -
o8 o of o ol o
Safety Check. 1f the inversion was performed correctly. then the multiplica-
tion of the original matrix by the inverted matrix should yield an identity matrix:

{oﬁ OLS:I {al ao} et + o o + alo} _ {1 O} (8.46)
@ oflla® o] laf+a® oo’ 0 1 '

Continuing from Equation (8.42), we begin our search for the error locations
by solving for the coefficients of the error-locator polynomial o(X). as follows:

3 571116 1 0 6 7 0
i o P S Y et 8 e P B
From Equations (8.39) and (8.47),
o(X) =o' + o X+ 0,X° (8.48)
=a’ + a°X + o"X?

458 Channel Coding: Part 3 Chap. 8




The roots of o(X) are the reciprocals of the error locations. Once these roots
are located, the error locations will be known. In general, the roots of o(X') may be
one or more of the elements of the field. We determine these roots by exhaustive
testing of the o(X) polynomial with each of the field elements. as shown below.
Any element X that vields o(X) = 0 is a root, and allows us to locate an error:

gy =a’"+a"+a’=a"#0

o Y=d"+ad"+a’=a’#0

o) =o'+ +a'=a"#0

o) =o'+ o’ + «®* = 0= ERROR
o(a') = o’ + o' + o = 0= ERROR
o) =ad"+a"+at+t?=a>#0
o0 =+ a? + a? = a £ 0

As seen in Equation (8.39), the error locations are at the inverse of the roots
of the polynomial. Therefore o(a®) = 0 indicates that one root exits at 1/8, = .
Thus, B, = 1/a® = «*. Similarly, o(«*) = 0 indicates that another root exits at 1/f, =
1/a* = o, where (for this example) € and € refer to the 1" and 2™ error respec-
tively. Since there are 2-symbol errors here, the error polynomial is of the form

e(X)=¢; X+e, X (8.49)
The two errors were found at locations o’ and «®. Note that the indexing of

the error-location numbers is completely arbitrdry Thus, for this example, we can

designate the B, = o/t values as B, =/t = o* and B, = a/2 = o*.

8.1.6.3 Error Values

An error had been denoted e;,, where the index j refers to the error location
and the index € identifies the €th error. Since each error value is coupled to a par-
ticular location, the notation can be simplified by denoting e;, simply as e,. Now
preparing to determine the error values e; and e,, associated w1th locations B, = o’
and B, = o, any of the four syndrome equations can be used. From Equation
(8.38), let us use S; and S,:

Sy =r(a) =e B + €8, (8.50)
S, = r(a?) = eBi + e,p3

We can write these equations in matrix form as follows:

Bl Bz €| _ S1
{B? B%} LJ - {SJ (8.51)

o o]l 5

8.1 Reed-Solomon Codes 459



To solve for the error values e, and e,, the matrix in Equation (8.52) is in-
verted in the usual way, yielding

6 | 3
o’ o« ool — afat

ol ot
{013 0(4} OL(’ 0&3
Inv ="

ot + o

ol
o o o o
Now, we solve Equation (8.52) for the error values, as follows:

2 5 3 5 10 2

e o a o o T+ a Qo
= = = = < 8.54
Lj Lo oﬁ} LS} {of + ag} L"} (8.54)

8.1.6.4 Correcting the Received Polynomial with Estimates
of the Error Polynomial

{(xl 044}

6 3 ! 1

-2 %S a{a aﬂ} = 0({04 al (8.53)
k o

o + o

o + o

From Equation (8.49) and (8.54), the estimated error polynomial is formed,
to yield

e(X) = e, X1+ e, X" (8.55)
= o’X* + o X?

The demonstrated algorithm repairs the received polynomial yielding an esti-
mate of the transmitted codeword, and ultimately delivers a decoded message.
That is,

U(X) = 1(X) + é(X) = U(X) + e(X) + é(X) (8.56)
(X 011X 2 + (100)X3 + (101)X* + (110)X° + (111)X°

) =

) ( (

é(X) = (000) + (000)X + (000)X? + (001)X* + (111)X* + (000)X” + (000)X°
) ) (

= (100) + (001)X +

(X (100) + (001)X + (011)X% + (101)X* + (010)X" + (110)X° + (111 x°
=o'+ 2N+ ot X+ X+ X+ X+ X (8.57)

Since the message symbols constitute the rightmost k = 3 symbols. the de-
coded message i3

010 110 111
NI
(03 Q o

which is exactly the test message that was chosen in Section 8.1.5 for this example.
(For further reading on R-S coding, see the collection of papers in reference [6].)

460 Channel Coding: Part 3 Chap. 8




8.2 INTERLEAVING AND CONCATENATED CODES

Throughout this and earlier chapters we have assumed that the channel is memory-
less, since we have considered codes that are designed to combat random indepen-
dent errors. A channel that has memory is one that exhibits mutually dependent
signal transmission impairments. A channel that exhibits multipath fading, where
signals arrive at the receiver over two or more paths of different lengths, is an ex-
ample of a channel with memory. The effect is that the signals can arrive out of
phase with each other, and the cumulative received signal is distorted. Wireless
mobile communication channels, as well as ionospheric and tropospheric propaga-
tion channels, suffer from such phenomena. (See Chapter 15 for details on fading
channels.) Also, some channels suffer from switching noise and other burst noise
(e.g.. telephone channels or channels disturbed by pulse jamming). All of these
time-correlated impairments result in statistical dependence among successive
symbol transmissions. That is, the disturbances tend to cause errors that occur in
bursts, instead of as isolated events.

Under the assumption that the channel has memory, the errors no longer can
be characterized as single randomly distributed bit errors whose occurrence is inde-
pendent from bit to bit. Most block or convolutional codes are designed to combat
random independent errors. The result of a channel having memory on such coded
signals is to cause degradation in error performance. Coding techniques for chan-
nels with memory have been proposed, but the greatest problem with such coding
is the difficulty in obtaining accurate models of the often time-varying statistics of
such channels. One technique, which only requires a knowledge of the duration or
span of the channel memory, nof its exact statistical characterization, is the use of
time diversity or interleaving.

Interleaving the coded message before transmission and deinterleaving after
reception causes bursts of channel errors to be spread out in time and thus to be
handled by the decoder as if they were random errors. Since, in all practical cases,
the channel memory decreases with time separation, the idea behind interleaving is
to separate the codeword symbols in time. The intervening times are similarly filled
by the symbols of other codewords. Separating the symbols in time effectively
transforms a channel with memory to a memoryless one, and thereby enables the
random-error-correcting codes to be useful in a burst-noise channel.

The interleaver shuffles the code symbols over a span of several block lengths
(for block codes) or several constraint lengths (for convolutional codes). The span
required is determined by the burst duration. The details of the bit redistribution
pattern must be known to the receiver in order for the symbol stream to be deinter-
leaved before being decoded. Figure 8.10 illustrates a simple interleaving example.
In Figurc 8.10a we sce seven uninterleaved codewords, A through G. Each code-
word is comprised of seven code symbols. Let us assume that the code has a single-
crror-correcting capability within each seven-symbol sequence. If the memory span
of the channel is one codeword in duration, such a seven-symbol-time noise burst
could destroy the information contained in one or two codewords. However, sup-
pose that, after having encoded the data, the code symbols were then interleaved or
shuffled, as shown in Figure 8.10b. That is, each code symbol of each codeword is

8.2 Interleaving and Concatenated Codes 461



"s|oquiAs apod paaeapalu| (g) 'S|IoqWAS 9poo uaAss Jo pasuduwoo
yoes ‘spJomepod peAespauiun eulbuO (e) -e|dwexs Buinespsiu]  gL'g ainbi4

(q)
L 9 g v € 4 L
SpJom
ot |t a\alfolta v Pl PaPaPo Pa Py ol (S [fa|fo | |V |0\ | A | a "o [Fa [Py [EolSd [Pa (Falto P Py [Po|d [faftaleolfa v | ol |a | a |0 | a 'Y nm>wm_§c_
XXX XXXX
~—1S4NQ 10043 —|
(e)
spiom
hcmgmmvvg mmv NU —U nr»N @k m,m v,m mnN wnw {N h.@wm Sl vr& €7 Nm _.,‘W mQ@QquQmQNQ —Q mo wO mU vO M_U NU fU \.mwmmm ﬁm‘mm Nm —m h<m<m<v<m<w<q _.A\ papod
jeuibuQ
9 A i} a 0 q \4




separated from its preinterleaved neighbors by a span of seven symbol times. The
interleaved stream is then used to modulate a waveform that is transmitted over
the channel. A contiguous channel noise burst occupying seven symbol times is
seen in Figure 8.10b, to affect one code symbol from each of the original seven
codewords. Upon reception, the stream is first deinterleaved so that it resembles
the original coded sequence in Figure 8.10a. Then the stream is decoded. Since
cach codeword possesses a single-error-correcting capability, the burst noise has no
degrading effect on the final sequence.

Interleaving techniques have proven useful for all the block and convolu-
tional codes described here and in earlier chapters. Two types of interleavers are
commonly used, block interleavers and convolutional interleavers. They are each
described below.

8.2.1 Block Interleaving

A block interleaver accepts the coded symbols in blocks from the encoder, per-
mutes the symbols, and then feeds the rearranged symbols to the modulator.
The usual permutation of the block is accomplished by filling the columns of an
M-row-by N-column (M x N} array with the encoded sequence. After the array is
completely filled, the symbols are then fed to the modulator one row at a time and
transmitted over the channel. At the receiver, the deinterleaver performs the in-
verse operation; it accepts the symbols from the demodulator, deinterleaves them,
and feeds them to the decoder. Symbols are entered into the deinterleaver array by
rows, and removed by columns. Figure 8.11a illustrates an example of an inter-
leaver with M = 4 rows and N = 6 columns. The entries in the array illustrate the
order in which the 24 code symbols are placed into the interleaver. The output
sequence to the transmitter consists of code symbols removed from the array by
rows, as shown in the figure. The most important characteristics of such a block
interleaver are as follows:

1. Any burst of less than N contiguous channel symbol errors results in isolated
errors at the deinterlever output that are separated from each other by at
least M symbols.

2. Any bN burst of errors, where b > 1, results in output bursts from the deinter-
leaver of no more than [ ] symbol errors. Each output burst is separated
from the other bursts by no less than M — | b symbols. The notation [x]
means the smallest integer no less than x, and | xJ means the largest integer
no greater than x.

3. A periodic sequence of single errors spaced N symbols apart results in a
single burst of errors of length M at the deinterleaver output.

4. The interleaver/deinterleaver end-to-end delay is approximately 2MN symbol
times. To be precise, only M(N — 1) + 1 memory cells need to be filled before
transmission can begin (as soon as the first symbol of the last column of the
M x N array is filled). A corresponding number needs to be filted at the re-
ceiver before decoding begins. Thus the minimum end-to-end delay is
(2MN —2M + 2) symbol times, not including any channel propagation delay.

8.2 Interleaving and Concatenated Codes 463



N =6 colums

1 5 9 13 17 2
2 6 10 14 18 22
M =4 rows
3 7 11 15 19 23
4 8 12 16 20 24
Interleaver
output sequence: 1,5,9,13,17,21, 2,6,
{a)
1 5 9 13 17 21
2 6 10 (22)
3 (@) 1 15 19 23
4 8 12 16 20 24
(b)
1 5 9 13 17 21
2 6 10 (22)
DO H®m® @
4 8 12 16 20 24
(c)
1 5 @ 13 17 21
2 6 14 18 22
3 7 (1) 15 19 23
a 8 (12 16 20 24
(d)
464

Figure 8.11 Block interleaver ex-
ample. (@) M x N block interleaver.
(b) Five-symbol error burst. (c) Nine-
symbol error burst. (d) Periodic single-
error sequence spaced N = 6 symbols
apart.

Channel Coding: Part 3 Chap. 8




5. The memory requirement is MN symbols for each location (interleaver and
deinterleaver). However, since the M x N array needs to be (mostly) filled be-
fore it can be read out, a memory of 2MN symbols is generally implemented
at each location to allow the emptying of one M x N array while the other is
being filled, and vice versa.

Example 8.4 Interleaver Characteristics
Using the M = 4, N = 6 interleaver structure of Figure 8.11a, verify each of the block
interleaver characteristics described above.
Solution

1. Let there be a noise burst of five symbol times. such that the symbols shown
e¢ncircled in Figure 8.11b experience errors in transmission. After deinterleaving at
the receiver, the sequence is

12 ® 456 @ 8§ 9 10 11 12

134 15 16 17 @ 19 20 21 @ 23 24

where the encircled symbols are in error. It is seen that the smallest separation
between symbols in error is M =4.

2. Let b = 1.5 so that bN = 9. Figure 8.11¢ illustrates an example of nine-symbol error
burst. After deinterleaving at the recciver, the sequence is

120 456 @89 10 @ 12
130 @ 16 17 @ @ 2021 @ @ 24

Again, the encircied symbols are in error. It is seen that the bursts consist of no
more than [1.5] = 2 contiguous symbols and that they are scparated by at least
M —[1.5]=4-1=3symbols.

3. Figure 8.11d illustrates a scquence of single errors spaced by N = 6 symbols apart.
After deinterleaving at the receiver, the sequence is

12 3456 780 3O

13 14 15 16 17 18 19 20 21 22 23 24

It is seen that the deinterleaved sequence has a singe error burst of length M =4
symbols.

4. End-to-end delay: The minimum end-to-end delay due to the interleaver and dein-
terleaver is (2MN — 2M + 2) = 42 symbol times.

5. Memory requirement: The interleaver and the deinterleaver arrays are each of
size M x N. Therefore, storage for MN = 24 symbols is required at each end of the
channel. As mentioned earlier, storage for 2MN = 48 symbols would generally be
implemented.

Typically, for use with a single-error-correcting code the interleaver parame-
ters are selected such that the number of columns N overbounds the expected burst
length. The choice of the number of rows M is dependent on the coding scheme
used. For block codes, M should be larger than the code block length, while for

8.2 Interleaving and Concatenated Codes 465



convolutional codes, M should be larger than the constraint length. Thus a burst of
length N can cause at most a single error in any block codeword: similarly, with
convolutional codes, there will be at most a single error in any decoding constraint
length. For r-error-correcting codes, the choice of N need only overbound the
expected burst length divided by .

8.2.2 Convolutional Interleaving

Convolutional interleavers have been proposed by Ramsey [7] and Forney [8]. The
structure proposed by Forney appears in Figure 8.12. The code symbols are se-
quentially shifted into the bank of N registers; each successive register provides
J symbols more storage than did the preceding one. The zeroth register provides no
storage (the symbol is transmitted immediately). With each new code symbol the
commutator switches to a new register, and the new code symbol is shifted in while
the oldest code symbol in that register is shifted out to the modulator/transmitter.
After the (N — 1)th register, the commutator returns to the zeroth register and
starts again. The deinterleaver performs the inverse operation, and the input
and output commutators for both interleaving and deinterleaving must be
synchronized.

Figure 8.13 illustrates an example of a simple convolutional four-register
(J = 1) interleaver being loaded by a sequence of code symbols. The synchronized
deinterleaver is shown simultaneously feeding the deinterleaved symbols to the de-
coder. Figure 8.13a shows symbols 1 to 4 being loaded; the xs represent unknown
states. Figure 8.13b shows the first four symbols shifted within the registers and the
entry of symbols 5 to 8 to the interleaver input. Figure 8.13¢ shows symbols 9 to 12
entering the interleaver. The deinterleaver is now filled with message symbols, but
nothing useful is being fed to the decoder yet. Finally, Figure 8.13d shows symbols

Commutator

switches
(N-1)JH—0

I
:

O— (N -2)J—0O

O
H
O

J

To
decoder

From

han
encoder Channel

J

O
H I N I
O

O (N-2)J—0

|

(N-1J—0

Interleaver Deinterleaver

Figure 8.12 Shift register implementation of a convolutiona!
interleaver/deinterleaver.

466 Channel Coding: Part 3 Chap. 8




Interleaver Deinterleaver

From C To
encoder ommutator decoder
switches
1 1 X
. " H .
3 X X
4 X o o X
(a)

5 5 X
i . ﬁ:ﬁ .
7 X X
8 X e} -0 X
{b)
X
X
X
X
(c)

Figure 8.13 Convolutional interleaver/deinterleaver example.

8.2 Interleaving and Concatenated Codes 467



13 to 16 entering the interleaver, and at the output of the deinterleaver. symbols
1 to 4 are being passed to the decoder. The process continues in this way until the
entire codeword sequence, in its original preinterleaved form, is presented to the
decoder.

The performance of a convolutional interleaver is very similar to that of a
block interleaver. The important advantage of convolutional over block interleav-
ing is that with convolutional interleaving the end-to-end delay is M(N — 1) sym-
bols, where M = NJ, and the memory required is M(N — 1)/2 at both ends of the
channel. Therefore, there is a reduction of one-half in delay and memory over the
block interleaving requirements [9].

8.2.3 Concatenated Codes

A concatenated code is one that uses two levels of coding. an inner code and an
outer code, to achieve the desired error performance. Figure 8.14 illustrates the
order of encoding and decoding. The inner code, the one that interfaces with
the modulator/demodulator and channel, is usually configured to correct most of
the channel errors. The outer code, usually a higher-rate (lower-redundancy) code.
then reduces the probability of error to the specified level. The primary reason for
using a concatenated code is to achieve a low error rate with an overall implemen-
tation complexity which is less than that which would be required by a single cod-
ing operation. In Figure 8.14 an interleaver is shown between the two coding steps.
This is usually required to spread any error bursts that may appear at the output of
the inner coding operation.

One of the most popular concatenated coding systems uses a Viterbi-decoded
convolutional inner code and a Reed-Solomon (R-S) outer code, with interleaving
between the two coding steps [2]. Operation of such systems with E,/N, in the
range 2.0 to 2.5 dB to achieve Pz = 107 is feasible with practical hardware [9]. In
this system, the demodulator outputs soft quantized code symbols to the inner con-
volutional decoder, which in turn outputs hard quantized code symbols with bursty
errors to the R-S decoder. (In a Viterbi-decoded system, the output errors tend to

Input — Outer »{ Interleave »| Inner —{ Modulate
data encode encode

Interference —={ Channel

/

Decoded Outer | Deinterleave | Inner Demodulate

data decode decode

Figure 8.14 Block diagram of a concatenated coding system.

468 Channel Coding: Part 3 Chap. 8




occur in bursts.) The outer R-S code is formed from m-bit segments of the binary
data stream. The performance of such a (nonbinary) R-S code depends only on the
number of symbol errors in the block. The code is undisturbed by burst errors
within an m-bit symbol. That is, for a given symbol error, the R-S code perfor-
mance is the same whether the symbol error is due to one bit being in error or m
bits being in error. However, the concatenated system performance is severely de-
graded by correlated errors among successive symbols. Hence interleaving between
codes at the symbol level (not at the bit level) needs to be provided. Reference [10]
presents a review of concatenated codes that have been investigated for deep-space
communications. In the next section we consider a popular consumer application of
symbol interleaving in a concatenated system.

8.3 CODING AND INTERLEAVING APPLIED TO THE COMPACT DISC
DIGITAL AUDIO SYSTEM

In 1979, Philips Corp. of the Netherlands and Sony Corp. of Japan defined a stan-
dard for the digital storage and reproduction of audio signals, known as the com-
pact disc (CD) digital audio system. This CD system has become the world standard
for achieving fidelity of sound reproduction that far surpasses any other available
technique. A plastic disc 120 mm in diameter is used to store the digitized audio
waveform. The waveform is sampled at 44.1 kilosamples/s to provide a recorded
bandwidth of 20 kHZ; each audio sample is uniformly quantized to one of 2'® levels
(16 bits/sample), resulting in a dynamic range of 96 dB and a total harmonic distor-
tion of 0.005%. A single disc (playing time approximately 70 minutes) stores about
10" bits in the form of minute pits that are optically scanned by a laser.

There are several sources of channel errors: (1) small unwanted particles or
air bubbles in the plastic material or pit inaccuracies arising in manufacturing, and
(2) fingerprints or scratches during handling. It is difficult to predict how, on the
average, a CD will get damaged; but in the absence of an accurate channel model,
it is safe to assume that the channel mainly has a burstlike error behavior, since a
scratch or fingerprint will cause several consecutive data samples to be in error. An
important aspect of the system design contributing to the high-fidelity performance
is a concatenated error-control scheme cailed the cross-interleave Reed-Solomon
code (CIRC). The data are rearranged in time so that digits stemming from con-
tiguous samples of the waveform are spread out in time. In this way, error bursts
are made to appear as single random events (see the earlier sections on interleav-
ing). The digital information is protected by adding parity bytes derived in two
Reed-Solomon (R-S) encoders. Error control applied to the compact disc depends
mostly on R-S coding and multiple layers of interleaving.

In digital audio applications, an undetected decoding error is very serious
since it results in clicks, while occasional detected failures are not so serious because
they can be concealed. The CIRC error-control scheme in the CD system involves
both correction and concealment of errors. The performance specifications for the
CIRC are given in Table 8.4. From the specifications in the table it would appear

8.3 Coding and Interleaving Applied to the Compact Disc Digital Audio System 469



TABLE 8.4 Specifications for the CD Cross-Interleave Reed—Solomon Code

Maximum correctable burst length = 4000 bits (2.5-mm track length on the disc)
Maximum interpolatable burst length = 12,000 bits (8 mm)
Sample interpolation rate One sample every 10 hours at Py = 107

1000 samples/min at Pg = 107~

Undetected error samples (clicks) Less than one every 750 hours at Pg =107
Negligible at Py < 107

New discs are characterized by Py =~ 10"

that the CD can endure much damage (e.g., 8-mm holes punched in the disc) with-
out any noticeable effect on the sound quality.

The CIRC system achieves its error control by a hierarchy of the following
techniques:

1. The decoder provides a level of error correction.

2. If the error correction capability is exceeded, the decoder provides a level of
erasure correction (see Section 6.5.5).

3. If the erasure correction capability is exceeded, the decoder attempts to con-
ceal unreliable data samples by interpolating between reliable neighboring
samples.

4. If the interpolation capability is exceeded, the decoder blanks out or mutes
the system for the duration of the unreliable samples.

8.3.1 Circ Encoding

Figure 8.15 illustrates the basic CIRC encoder block diagram (within the CD
recording equipment) and the decoder block diagram (within the CD player equip-
ment). Encoding consists of the encoding and interleaving steps designated as A
interleave, C, encode, D* interleave, C; encode, and D interleave. The decoder
steps, consisting of deinterleaving and decoding, are preformed in the reverse
order of the encoding steps and are designated as D deinterleave, C; decode, D*
deinterleave, C, decode, and A deinterleave.

Figure 8.16 illustrates the basic system frame time, comprising six sampling
periods, each made up of a stereo sample pair (16-bit left sample and 16-bit right
sample). The bits are organized into symbols or bytes of 8 bits each. Therefore,
each sample pair contains 4 bytes, and the uncoded frame contains k = 24 bytes.
Figure 8.16a—e summarizes the five encoding steps that characterize the CIRC sys-
tem. The function of each of these steps will best be understood when we consider
the decoding operation. The steps are as follows:

(a) A interleave. Even-numbered samples are separated from odd-numbered

samples by two frame times in order to scramble uncorrectable but detectable
byte errors. This facilitates the interpolation process.

470 Channel Coding: Part 3 Chap. 8




Encoder

Encoder A Cy _ D Cq D
input interleave encode interleave encode interleave
Encoder
output

|

Decoder
Decoder input
Decoder A Cy D* Cq D
output deinterleave decode deinterleave decode deinterleave

Figure 8.15 CIRC encoder and decoder.

(b) C, encode. Four Reed-Solomon (R-S) parity bytes are added to the
A-interleaved 24-byte frame, resulting in a total of n = 28 bytes. This (28, 24)
code is called the outer code.

(¢) D* interleave. Here each byte is delayed a different length, thereby spreading
errors over several codewords. C, encoding together with D* interleaving
have the function of providing for the correction of burst errors and error pat-
terns that the C,; decoder cannot correct.

(d) C, encode. Four R-S parity bytes are added to the k = 28 bytes of the
D*-interleaved frame, resulting in a total of n = 32 bytes. This (32, 28) code is
called the inner code.

(e) D interleave. The purpose is to cross-interleave the even bytes of a frame with
the odd bytes of the next frame. By this procedure, two consecutive bytes on
the disc will always end up in two different codewords. Upon decoding, this
interleaving, together with the C; decoding, results in the correction of most
random single errors and the detection of longer burst errors.

8.3.1.1 Shortening the R-S Code

In Section 8.1 an (n, k) R-S code is expressed in terms of n = 2" — 1 total sym-
bols and k& = 2" — 1 — 2¢ data symbols, where m1 is the number of bits per symbol and
t is the error-correcting capability of the code in symbols. For the CD system,
where a symbol is made up of 8 bits, a 2-symbol error-correcting code can be con-
figured as a (255, 251) code. However, the CD system uses a considerably shorter
block length. Any block code (in systematic form) can be shortened without affect-
ing the number of errors that can be corrected within a block length. In terms of
the (255, 251) R-S code, imagine that 227 of the 251 data symbols are a set of all-
zero symbols (which are not actually transmitted and hence are not subject to any
errors). Then the code is really a (28, 24) code with the same 2-symbol error-
correcting capability. This is what is done in the C, encoder of the CD system.

8.3 Coding and Interleaving Applied to the Compact Disc Digital Audio System 471



«———— Frame time = 6 sampling periods —————

[LIL[RIR[L[L[R[R]L[L[R[R]L[L[R[R]L[L]R]R]L]L[R]R]

(a) Ainterleave |

One codeword
(28 symbols)

{b) C; encode % %
\ /

Parity bytes

{c) D* interleave

One codeword
(32 symbols)

(d) C1encode l W W
arit tes
N

(e} D interleave

Contains 6 sample pairs
(24 symbols or bytes)

Scrambles
uncorrectable but
detectable byte errors
to facilitate
interpolation between
reliable samples

For the correction of
burst errors and error
patterns that the C,
decoder cannot
correct

For the correction of
most random single-
byte errors and the
detection of the
longer burst errors

Figure 8.16 Compact disc encoder. (a) A interleave. (b) C, encode.

(c) D* interleave. (d) C, encode. (e) D interleave.

We can think of the 28 total symbols out of the C, encoder as the data sym-
bols into the C; encoder. Again, we can configure a shortened 2-symbol error-
correcting (255, 251) code by throwing away 223 data symbols—the result being a

(32, 28) code.

8.3.2 CIRC Decoding

The inner and outer R-S codes with (n, k) values (32, 28) and 28, 24) each use four
parity bytes. The code rate of the CIRC is (k/n)(ky/n,) = 24/32 = 3/4. From Equa-
tion (8.3) the minimum distance of the C; and C, R-S codes is d,,;,, =n —k+1=35.

From Equations (8.4) and (8.5)

472 Channel Coding: Part 3 Chap. 8




o[t

p=dym— 1 (8.59)

and

where ¢ is the error-correcting capability and p is the erasure-correcting capability,
it is seen that the C, or C, decoder can correct a maximum of 2 symbol errors or
4 symbol erasures per codeword. Or, as described by Equation (8.6). it is possible
to correct any pattern of « errors and y erasures simultaneously, provided that

20+ vy <dp, <n—k (8.60)

There is a trade-off between error correction and erasure correction; the larger
the error correcting capability used, the smaller will be the erasure correcting
capability.

The benefits of CIRC are best seen at the decoder, where the processing
steps, shown in Figure 8.17 are in the reverse order of the encoder steps. The
decoder steps are as follows:

1. D deinterleave. This function is performed by the alternating delay lines

marked D. The 32 bytes (Bj,...,Biy) of an encoded frame are applied in
D Deinterleaver C4 Decoder D* Deinterleaver C, Decoder A Deinterleaver
—r — — ——r
By ————"] e Di e -
I S -
o 0 e [ e N s b4 =
. = — =
Flag signal -
line pp—
E] A
C1 CZ
—_—
BOZLL
] L _ Dy | o ____ - L

B;3n —‘[_D—’_>

Figure 8.17 Compact disc decoder.

8.3 Coding and Interleaving Applied to the Compact Disc Digital Audio System 473



parallel to the 32 inputs of the D deinterleaver. Each delay is equal to the
duration of 1 byte, so that the information of the even bytes of a frame is
cross-deinterleaved with that of the odd bytes of the next frame.

2. C, decode. The D deinterleaver and the C; decoder are designed to correct
a single byte error in the block of 32 bytes and to detect larger burst errors.
If multiple errors occur, the C; decoder passes them on unchanged, attaching
to all 28 remaining bytes an erasure flag, sent via the dashed lines (the four
parity bytes used in the C| decoder are no longer retained).

3. D* deinterleave. Due to the different lengths of the deinterleaving delay lines
D*(1, ..., 27), errors that occur in one word at the output of the C; decoder
are spread over a number of words at the input of the C, decoder. This results
in reducing the number of errors per input word of the C, decoder, enabling
the C, decoder to correct these errors.

4. C, decode. The C, decoder is intended for the correction of burst errors that
the C; decoder could not correct. If the C, decoder cannot correct these
errors, the 24-byte codeword is passed on unchanged to the A deinterleaver
and the associated positions are given an erasure flag via the dashed output
lines, B, . . ., By

S. A deinterleave. The final operation deinterleaves uncorrectable but detected
byte errors in such a way that interpolation can be used between reliable
neighboring samples.

Figure 8.18 highlights the decoder steps 2, 3, and 4. At the output of the C,
decoder is seen a sequence of four 28-byte codewords that have exceeded the 1
byte per codeword error correction design. Therefore, each of the symbols in these
codewords is tagged with an erasure flag (shown with circles). The D* deinter-
leaver provides a staggered delay for each byte of a codeword, so that the bytes of a
given codeword arrive in different codewords at the input to the C, decoder. If we
assume that the delay increments of the D* deinterleaver in Figure 8.18 are 1 byte,
it would be possible to correct error bursts of as many as four consecutive C, code-
words (since the C, decoder is capable of four erasure corrections per codeword).
In the actual CD system, the delay increments are 4 bytes; therefore, the maximum
burst error correction capability consists of 16 consecutive uncorrectable C, words.

8.3.3 Interpolation and Muting

Samples that cannot be corrected by the C, decoder could cause audible distur-
bances. The function of the interpolation process is to insert new samples, esti-
mated from reliable neighbors, in place of the unreliable ones. If an entire C, word
is detected as unreliable, this would make it impossible to apply interpolation with-
out additional interleaving, since both even- and odd-numbered samples are unreli-
able. This can happen if the C; decoder fails to detect an error but the C, decoder
detects it. It is the purpose of A deinterleaving (over a span of two frame times) to
obtain a pattern where even-numbered samples can be interpolated from reliable
odd-numbered samples, or vice versa.

474 Channel Coding: Part 3 Chap. 8




28 bytes , /B//j

&
i 1 | | 1 1 P , .7
per A T
S
codeword e
// // // // //
A
Z}ﬁ//
C1 output codewords After deinterleaving:
after 4 consecutive assuming delay increments
burst detections of 1 byte

Figure 8.18 Example of 4-byte erasure capability. (Rightmost event is
at the earliest time.)

Two successive unreliable words consisting of 12 sample pairs are shown
in Figure 8.19. A sample pair consists of a sample (2 bytes) from the right audio
channel and a sample from the left audio channel. The numbers indicate the
ordering of the sets of samples. An encircled sample set denotes an erasure flag.
After A deinterleaving, the unreliable samples shown in the figure are estimated by
a first-order linear interpolation between neighboring samples that stem from a
different location on the disc.

In CD players, another level of error control is provided in case a burst length
of 48 frames is exceeded and 2 or more consecutive unreliable samples result. In
this case the system is muted (audio is softly blanked out), which is not discernible
to the human ear if the muting time does not exceed a few milliseconds. For a more
detailed treatment of the CIRC coding scheme in the CD system, see References
[11-15].

8.4 TURBO CODES

Concatenated coding schemes were first proposed by Forney [16} as a method for
achieving large coding gains by combining two or more relatively simple building-
block or component codes (sometimes called constituent codes). The resulting
codes had the error-correction capability of much longer codes, and they were
endowed with a structure that permitted relatively easy to moderately complex
decoding. A serial concatenation of codes is most often used for power-limited
systems such as transmitters on deep-space probes. The most popular of these
schemes consists of a Reed-Solomon outer (applied first, removed last) code
followed by a convolutional inner (applied last, removed first) code [10]. A turbo
code can be thought of as a refinement of the concatenated encoding structure
plus an iterative algorithm for decoding the associated code sequence. Because of

8.4 Turbo Codes 475



&

€¢

@)

L

@

6l

(‘own 1sa1pes BU) JE SI JUBAS IsounyBiy) “BuirBspBIUl JO J0BYT 61°g a.nbi4

QNFWWO

D

@) o v
mP@mmuw
@) s 2
" ® O

~Lv -

——

v -

14

€¢

4

6l

Sl

€l

@ @) =z
T ONO

OR®O

OOOG

ol

9

0

18po28p ZH

«
ol
[v]

<

O

Channel Coding: Part 3

476



its unique iterative form, we choose to list rurbo as a separate category under
structured sequences in Figure 1.3.

Turbo codes were first introduced in 1993 by Berrou. Glavieux, and
Thitimajshima, and reported in [17, 18], where a scheme is described that achieves
a bit-error-probability of 107, using a rate 1/2 code over an additive white Gaussian
noise (AWGN) channel and BPSK modulation at an E,/N, of 0.7 dB. The codes
are constructed by using two or more component codes on different interleaved
versions of the same information sequence. Whereas, for conventional codes, the
final step at the decoder yields hard-decision decoded bits (or more generally, de-
coded symbols), for a concatenated scheme, such as a turbo code. to work properly.
the decoding algorithm should not limit itself to passing hard-decisions among the
decoders. To best exploit the information learned from each decoder, the decoding
algorithm must effect an exchange of soft decisions rather than hard decisions. For
a system with two component codes, the concept behind turbo decoding is to pass
soft decisions from the output of one decoder to the input of the other decoder.
and to iterate this process several times so as to produce more reliable decisions.

8.4.1 Turbo Code Concepts

8.4.1.1 Likelihood Functions

The mathematical foundations of hypothesis testing rests on Bayes’ theorem,
which is developed in Appendix B. For communications engineering, where appli-
cations involving an AWGN channel are of great interest, the most useful form of
Bayes' theorem expresses the a posteriori probability (APP) of a decision in terms
of a continuous-valued random variable x as

P = ilxy = 2414 :p?xl;(d il

i=1,-M (8.61)

and

M

px) = 21 p(x|d =i)P(d = i) (8.62)
where P (d = ilx) is the APP, and d =i represents data d belonging to the ith signal
class from a set of M classes. Further, p(x|d = i) represents the probability density
function (pdf) of a received contiruous-valued data-plus-noise signal x, condi-
tioned on the signal class d = i. Also, p(d = i), called the a priori probability, is the
probability of occurrence of the ith signal class. Typically x is an “observable” ran-
dom variable or a test statistic that is obtained at the output of a demodulator or
some other signal processor. Therefore, p(x) is the pdf of the received signal x,
yielding the test statistic over the entire space of signal classes. In Equation (8.61),
for a particular observation, p(x) is a scaling factor since it is obtained by averaging
over all the classes in the space. Lower case p is used to designate the pdf of a
continuous-valued random variable, and upper case P is used to designate proba-
bility (a priori and APP). Determining the APP of a received signal from Equation
(8.61) can be thought of as the result of an experiment. Before the experiment,

8.4 Turbo Codes 477



there generally exists (or one can estimate) an a priori probability P(d = i). The
experiment consists of using Equation (8.61) for computing the APP. P(d = i|x).
which can be thought of as a “refinement” of the prior knowledge about the data.
brought about by examining the received signal x.

8.4.1.2 The Two-Signal Class Case

Let the binary logical elements 1 and 0 be represented electronically by volt-
ages +1 and -1, respectively. The variable d is used to represent the transmitted
data bit, whether it appears as a voltage or as a logical element. Sometimes one for-
mat is more convenient than the other; the reader should be able to recognize the
difference from the context. Let the binary 0 (or the voltage value —1) be the null
element under addition. For signal transmission over an AWGN channel, Figure
8.20 shows the conditional pdfs, referred to as likelihood functions. The rightmost
function p(x |d = +1) shows the pdf of the random variable x conditioned on d = + 1
being transmitted. The leftmost function p(x|d = —1) illustrates a similar pdf condi-
tioned on d = —1 being transmitted. The abscissa represents the full range of possi-
ble values of the test statistic x generated at the receiver. In Figure 8.20. one such
arbitrary value x, is shown, where the index denotes an observation in the kth time
interval. A line subtended from x, intercepts the two likelihood functions yielding
two likelihood values €, = p(x;ldi = +1) and €, = p (x,|d, =-1). A well-known hard-
decision rule, known as maximum likelihood, is to choose the data d, = +1 or d, =
-1 associated with the larger of the two intercept values €, or {,, respectively. For
each data bit at time £, this is tantamount to deciding that d, = +1 if x, falls on the
right side of the decision line labeled v,, otherwise deciding that d, = —1.

A similar decision rule, known as maximum a posteriori (MAP), which can be
shown to be a minimum-probability-of-error rule, takes into account the a priori prob-
abilities of the data. The general expression for the MAP rule in terms of APPs is

P(d=+1x) 2 Pd=—1|x) (8.63)

Hy

Likelihood of d = -1  Likelihood of d = +1
plald=-1) plald=+1)

Figure 8.20 Likelihood functions.

478 Channel Coding: Part 3 Chap. 8




Equation (8.63) states that one should choose the hypothesis ;. (d=+1) it
the APP, P(d = +11x), is greater than the APP, P(d = -1|x). Otherwise, one should
choose hypothesis Hs, (d = —1). Using the Bayes’ theorem of Equation (8.61), the
APPs in Equation (8.63) can be replaced by their equivalent expressions, yielding

plxld = +1) P(d = -I—l)%p(xld: ~1)P(d = —1) (8.64)
2

where the pdf p(x) appearing on both sides of the inequality in Equation (8.61) has
been canceled. Equation (8.64) is generally expressed in terms of a ratio, yielding
the so-called likelihood ratio test, as follows:

p(x\d=+l)12 P(d=-1) p(x\d=+1)P(d=+])Fi1 2 65
pcld = -1y Pld=+1) " p(x|ld=-1)P(d=-1) n (865)

8.4.1.3 Log-Likelihood Ratio

By taking the logarithm of the likelihood ratio developed in Equations (8.63)
through (8.65), we obtain a useful metric called the log-likelihood ratio (LLR). Tt is
a real number representing a soft decision out of a detector, designated by

_ [Pd=+1x)]  [plld=+1)P(d=+1)
vty =toe i = = o [ S = ) %
so that
3 p(x|d = +1) Pd= +1)
L(d|x) = log {————p(x'd: _])} +log{‘————P(d: 1) (8.67)
or
L(d|x) = L{x|d) + L(d) (8.68)

where L(x|d) is the LLR of the test statistic x obtained by measurements of the
channel output x under the alternate conditions that d = +1 or d = —1 may have
been transmitted, and L(d) is the a priori LLR of the data bit d. To simplify the
notation, Equation (8.68) is rewritten as

L(d) = L(x) + L(d) (8.69)

where the notation L_(x) emphasizes that this LLR term is the result of a channel
measurement made at the receiver. Equations (8.61) through (8.69) were devel-
oped with only a data detector in mind. Next, the introduction of a decoder will
typically yield decision-making benefits. For a systematic code, it can be shown [17]
that the LLR (soft output) out of the decoder is equal to

~ ~

L(d) = L(d) + L.(d) (8.70)

8.4 Turbo Codes 479



where L’(d ) is the LLR of a data bit out of the demodulator (input to the decoder).
and L(,(dA ), called the extrinsic LLR, represents extra knowledge that is gleaned
from the decoding process. The output sequence of a systematic decoder is made
up of values representing data bits and parity bits. From Equations (8.69) and
(8.70), the output LLR of the decoder is now written as

L(d) = L.(x) + L(d) + L,(d) (8.71)

Equation (8.71) shows that the output LLR of a systematic decoder can be
represented as having three LLR elements—a channel measurement, a priori
knowledge of the data, and an extrinsic LLR stemming solely from the decoder. To
yield the final L(d) each of the individual LLRs can be added as shown in Equa-
tion (8.71), because the three terms are statistically independent [17, 19]. The proof
is left as an exercise for the reader. (See Problem 8.18.) This soft decoder output
L(d) is a real number that provides a hard decision as well as the reliability of that
decision. The sign of L(d) denotes the hard decision—that is, for positive values of
L(d) decide that d = +1, and for negative values that d = —1. The magnitude of L(d)
denotes the reliability of that decision. Often the value of L (d) due to the decod-
ing has the same sign as L (x) + L(d) and therefore acts to improve the reliability
of L(d).

8.4.1.4 Principles of Iterative (Turbo) Decoding

In a typical communications receiver, a demodulator is often designed to pro-
duce soft decisions which are then transterred to a decoder. In Chapter 7. the error-
performance improvement of systems utilizing such soft decisions compared with
hard decisions were quantified as being approximately 2 dB in AWGN. Such a de-
coder could be called a soft-input/hard-output decoder, because the final decoding
process out of the decoder must terminate in bits (hard decisions). With turbo
codes, where two or more component codes are used, and decoding involves feed-
ing outputs from one decoder to the inputs of other decoders in an iterative fash-
ion, a hard-output decoder would not be suitable. That is because hard decisions
into a decoder degrades system performance (compared with soft decisions).
Hence, what is needed for the decoding of turbo codes is a soft-input/soft-output
decoder. For the first decoding iteration of such a soft-input/soft-output decoder. il-
lustrated in Figure 8.21, one generally assumes the binary data to be equally likely,
yielding an initial a priori LLR value of L(d) = 0 for the third term in Equation
(8.67). The channel LLR value L (x) is measured by forming the logarithm of the
ratio of the values of €; and ¢, for a particular observation of x (see Figure 8.20),
which appears as the second term in Equation (8.67). The output L(d ) of the de-
coder in Figure 8.21 is made up of the LLR from the detcctor L( d) and the extrin-
sic LLR output L, (d) representing knowledge gleaned from the decoding process.
As illustrated in Figure 8.21, for iterative decoding, the extrinsic likelihood is fed
back to the input (of another component decoder) to serve as a refinement of the
a-priori probability of the data for the next iteration.

480 Channel Coding: Part 3 Chap. 8




Feedback for the next iteration

- -7
I I
bV Ld) l
* a priori
1 value in :
I
! l
——— — ——a—
L.(d)
extrinsic
Detector a posteriori Soft-in | value ou Output LLR value
LR value soft-out L) =L'@) + Leld)
L'(d) = Lx) + L(d) decoder - T e
— ——
L.(x) L'(d)
channel a posteriori
value in value out

Figure 8.21 Soft input/soft output decoder (for a systematic code).

8.4.2 Log-Likelihood Algebra

To best explain the iterative feedback of soft decoder outputs, the concept of a log-
likelihood algebra [19] is introduced. For statistically independent data d, the sum
of two log likelihood ratios (LLRS) is defined as

L{dy) + L(d2)
¢ ¢ } (8.72)

L(d)) BB L(d)A L(d, ® d,) = log, {W

~(=1) x sgn [L(d,)] X sgn[L(d,)] X min (IL(d,)],|L(d)]) ~ (8.73)

where the natural logarithm is used, and the function sgn (-) represents the “polar-
ity of.” There are three addition operations in Equation (8.72). The + sign is used
for ordinary addition. The @ sign is used to denote the modulo-2 sum of data ex-
pressed as binary digits. The [ sign denotes log-likelihood addition, or equiva-
lently, the mathematical operation described by Equation (8.72). The sum of two
LLRs denoted by the operator [H is defined as the LLR of the modulo-2 sum of the
underlying statistically independent data bits. The development of Equation (8.72)
is shown in Appendix 8A. Equation (8.73) is an approximation of Equation (8.72)
that will prove useful later in a numerical example. The sum of LLRs, as described
by Equations (8.72) or (8.73), yields the following interesting results when one of
the LLRs is very large or very small:

LdB® =-L({d)
and

L(d)E0=0

8.4 Turbo Codes 481



Note that the log-likelihood algebra described here differs slightly from that used
in [19] because of a different choice of the null element. In this treatment. the null
element of the binary set (1, 0) has been chosen to be 0.

8.4.3 Product Code Example

Consider the 2-dimensional code (product code) depicted in Figure 8.22. The config-
uration can be described as a data array made up of k; rows and &, columns. The &,
rows contain codewords made up of k, data bits and n, — k, parity bits. Thus each of
the k, rows represents a codeword from an (n,, k,) code. Similarly, the k, columns
contain codewords made up of k; data bits and n, — k, parity bits. Thus, each of the &,
columns represents a codeword from an (rn;, k) code. The various portions of the
structure are labeled d for data, p, for horizontal parity (along the rows), and p, for
vertical parity (along the columns). In effect, the block of &, x k, data bits is encoded
with two codes—a horizontal code, and a vertical code.

Additionally, in Figure 8.22, there are blocks labeled L., and L,, containing
the extrinsic LLR values learned from the horizontal and vertical decoding steps.
respectively. Error-correction codes generally provide some improved perfor-
mance. We will see that the extrinsic LLRS represent a measure of that improve-
ment. Notice that this product code is a simple example of a concatenated code. Its
structure encompasses two separate encoding steps—horizontal and vertical.

Recall that the final decoding decision for each bit and its reliability hinges on
the value of L(d ), as shown in Equation (8.71). With this equation in mind. an al-
gorithm yielding the extrinsic LLRS (horizontal and vertical) and a final L(d ) can
be described. For the product code, this iterative decoding algorithm proceeds as
follows:

1. Set the a-priori LLR L(d) =0 (unless the a priori probabilities of the data bits
are other than equally likely).

ky na—ky
columns columns

k1 rows d Dh Ly

n1—kqrows Py Extrinsic
horizontal

Leu

Extrinsic
vertical Figure 8.22 Two-dimensional product code.

482 Channel Coding: Part 3 Chap. 8




2. Decode horizontally, and, using Equation (8.71), obtain the horizontal extrin-
sic LLR

Leh(a) = L(&’) - L(‘ (X) - L(d)

3. Set L(d)= L,,(d ) for the vertical decoding of step 4.

4. Decode vertically, and, using Equation (8.71), obtain the vertical extrinsic
LLR

L,(d)=L(d) - L(x)— L(d)

5. Set L(d) = L..(d) for the step 2 horizontal decoding. Then repeat steps 2
through 5.

6. After enough iterations (i.c., repetitions of steps 2 through 5) to yield a
reliable decision, go to step 7.

7. The soft output is

L(d) = L,(x) + L.(d) + L.(d) (8.74)

An example is next used to demonstrate the application of this algorithm to a
very simple product code.

8.4.3.1 Two-Dimensional Single-Parity Code Example

At the encoder. let the data bits and parity bits take on the values shown in
Figure 8.23a, where the relationships between data and parity bits within a particu-
lar row (or column) expressed as the binary digits (1, 0) are

di® d;=p; (8.75)
and
d=d ®p, ij {12, G4 (LI @) (876

in which @ denotes modulo-2 addition. The transmitted bits are represented by
the sequence dy, d,, ds, dy, P12, P3ss P13 Pas- At the receiver input, the noise-
corrupted bits are represented by the sequence {x;}, {x;;}, where x;=d, + n for each re-
ceived data bit, x;;= p,;+ n for each received parity bit, and n represents the noise con-
tribution that is statistically independent for both d; and p;;. The indices i and j
represent position in the encoder output array shown in Figure 8.23a. However, it is
often more useful to denote the received sequence as {x,}, where k is a time index.
Both conventions will be followed below—using i and j when focusing on the posi-
tional relationships within the product code, and using kK when focusing on the more
general aspect of a time-related signal. The distinction as to which convention is
being used should be clear from the context. Using the relationships developed in
Equations (8.67) through (8.69), and assuming an AWGN interference model. the
LLR for the channel measurement of a signal x, received at time k, is written

pxc|d= +1)

oGesd, = =1) (8.77a)

L. (x)) = log, {

8.4 Turbo Codes 483



di1=1|d2=0|p12=1

d3=0|da=1|p3a=1

p13=1|p2a=1

{(a) Encoder output binary digits

Le(x1) =15 L, (x2)=0.1 L, (x12) = 2.5
Lo(x3)=0.2 | L. (x4) = 0.3 [L. (x34) = 2.0
L. (x13) =6.0|L, (x24) = 1.0

(b) Decoder input log-likelihood ratios L (x) Figure 8.23 Product code example.

(8.77b)

Asvm el ()
exp | ——
o V2n P 2 g

_ 1 xk_l 2 1 Xk+1>2_2
_ 2( - >+2< - - S (8.77¢)

where the natural logarithm is used. If a further simplifying assumption is made
that the noise variance o is unity, then

L.(x}) = 2x, (8.78)

Consider the following example, where the data sequence d,, d,, ds, d, is
made up of the binary digits 1 0 0 1, as shown in Figure 8.23a. By the use of Equa-
tion (8.75). it is scen that the parity sequence p1,, pay, P13, Poy must be equal to the
digits 1 1 1 1. Thus. the transmitted sequence is

{d}. {pi}=10011111 (8.79)

When the data bits are expressed as bipolar voltage values of +1 and —1 corre-
sponding to the binary logic levels 1 and 0, the transmitted sequence is

{d}. {p;}=+1 -1 -1 +1 +1 +1 +1 +1

Assume now that the noise transforms this data-plus-parity sequence into the
received sequence

{x:}, {x;;} = 0.75, 0.05, 0.10, 0.15, 1.25. 1.0. 3.0. 0.5 (8.80)

where the members of {x;}, {x;]} positionally correspond to the data and parity {d}.
{p;;} that was transmitted. Thus, in terms of the positional subscripts, the received
sequence can be denoted as

484 Channel Coding: Part 3 Chap. 8




{xih it = X0, xg, X3, X4y X12s Xags Xp3, X4
From Equation (8.78), the assumed channel measurements yield the LLR values
{L.(x;))}{Lx;;)}=15,0.1, 020, 03, 2.5, 2.0, 6.0, 1.0 (8.81)

These values are shown in Figure 8.23b as the decoder input measurements. It
should be noted that, given equal prior probabilities for the transmitted data, if
hard decisions are made based on the {x,} or the {L.(x;)} values shown above, such
a process would result in two errors, since d, and d; would each be incorrectly
classified as binary 1.

8.4.3.2 Extrinsic Likelihoods

For the product-code example in Figure 8.23, we use Equation (8.71) to ex-
press the soft output for the received signal corresponding to data d; as

L((],) = L.(xq) + L(dy) + {[Lc(x2) + L(d,)] B L. (x12)} (8.82)

where the terms {[L.(x,) + L(d,)] H L.(xp,)} represent the extrinsic LLR con-
tributed by the code (i.e., the reception corresponding to data d, and its a priori
probability, in con]unctlon with the reception corresponding to parity py,). In gen-
eral the soft output L(d ) for the received signal corresponding to data d; is

L(d;)) = L.(x;) + L(d;) + {[L.(x;) + L(d;)] B L, (x;;)} (8.83)

where L.(x;), L{(x;), and L.(x;;) are the channel LLR measurements of the recep-
tion corresponding to d;, d;, and p;;, respectively. L(d;) and L(d)) arc the LLRs of
the a priori probabilities of d; and d; respectively, and {[L.(x;) + L(d)]H Lo(x; ;) is
the extrinsic LLR contribution from the code. Equations (8.82) and (8.83) can best
be understood in the context of Figure 8.23b. For this example, assuming equally
likely signaling, the soft output L(d,) is represented by the detector LLR measure-
ment of L.x;) = 1.5 for the reception corresponding to data d;, plus the extrinsic
LLR of [L.(x,) = 0.1]E [L.(x;,) = 2.5] gleaned from the fact that the data d, and the
parity py, also provide knowledge about the data d; as seen from Equations (8.75)
and (8.76).

8.4.3.3 Computing the Extrinsic Likelihoods

For the example in Figure 8.23, the horizontal calculations for Leh(d) and the
vertical calculations for L”(d) are expressed as follows:

Leh(al) = [L.(xp) + L(dy) ] H L. (*12) (8.84a)
Lo(@) = [Lo(xs) + L(dy)] B L, (x5 (8.84b)
Lo(dy) = [L(xy) + L(dy)] B L. (x1) (8.85a)
L,(dy) = [L.(xs) + L(dy)] 8 L (x24) (8.85b)

Loy(ds) = [Lo(xq) + L(dy)] B L, (x3) (8.86a)

8.4 Turbo Codes 485



Lo (ds) = [Lo{x)) + L(d\)] B L (x13) (8.86b)

Lop(dy) = [Lo(x3) + L(d3)] B L(x3) (8.87a)
Lef(ds) = [Lo(x2) + L(dy)] B L (x2) (8.87b)

The LLR values shown in Figure 8.23 are entered into the L{,,,((i) expressions
in Equations (8.84) through (8.87), and, assuming equally likely signaling, the L{d)
values are initially set equal to zero, yielding

L(@)=01+0)B25~ ~0.1=newL(d) (8.88)
L&) =(15+0)E 25~ —1.5 = new L(d-) (8.89)
L) = (03 + 0) @ 2.0 =~ —0.3 = new L(ds) (8.90)
L(d) =(02+0)B 20~ —02=newL(d,) (8.91)

where the log-likelihood addition has been calculated using the approximation in
Equation (8.73). Next, we proceed to obtain the first vertical calculations, using the
L..(d) expressions in Equations (8.84) through (8.87). Now, the values of L(d) can
be refined by using the new L(d) values gleaned from the first horizontal calcula-
tions, shown in Equations (8.88) through (8.91). That is,

L,(@) = (02— 03) @60~ 0.1 = new L(d,) (8.92)
L,(dy) = (03 ~02)H 1.0~ —0.1 = new L(d,) (8.93)
Lo(dy) =(15-01)B60~ —14 = new L(d3) (8.94)

L,(d) =01~ 15 1.0~ 10 = new L(d,) (8.95)

The results of the first full iteration of the two decoding steps (horizontal and
vertical) are as follows:

Original L {x,) measurements

5 1 o1 ~0.1 | =15
02 | 03 0.3 | 0.2
Leh(d) after first horizontal decoding
0.1 | -0.1
-14 | 1.0

L,,(d) after first vertical decoding

Each decoding step improves the original LLRS that are based on channel
measurements only. This is seen by calculating the decoder output LLR, using
Equation (8.74). The original LLR plus the horizontal extrinsic LIRS yield the fol-
lowing improvement (the extrinsic vertical terms are not yet being considered):

486 Channel Coding: Part 3 Chap. 8




Improved LLRS due to Lo(d)

1.4 | -14

0.1 0.1

The original LLR plus both the horizontal and vertical extrinsic LLRS yield
the following improvement:

Improved LLRS due to L;,(d) + L,,(d)

1.5 | -15

-1.5] 11

For this example. it is seen that the knowledge gained from horizontal decod-
ing alone is sufficient to yield the correct hard decisions out of the decoder, but
with very low confidence for data bits ds and d,. After incorporating the vertical ex-
trinsic LLRs into the decoder, the new LLR values exhibit a higher level of reliabil-
ity or confidence. Let us pursue one additional horizontal and vertical decoding
iteration to determine if there are any significant changes in the results. We again
use the relationships shown in Equations (8.84) through (8.87) and proceed with
the second horizontal calculations for L,,(d ), using the new L(d) from the first ver-
tical calculations, shown in Equations (8.92) through (8.95), so that

Ld)=(01-01)E25~= 0 =newlL(d)) (8.96)
Loy(dy) = (1.5 + 0.1) @2.5 = —1.6 = new L(d,) (8.97)
Lou(ds) = (03 + 1.0) 2.0 = —1.3 = new L(d5) (8.98)
Lo(dy) = (02 —14)H20~ 12 =newL(d,) (8.99)

Next, we proceed with the second vertical calculations for L,.(d), using the
new L(d) from the second horizontal calculations, shown in Equations (8.96)
through (8.99). This yields

L.(d)=(02-13)@60~ 1.1 =newL(d,) (8.100)
L,(d,) = (03 +12)H1.0~ —1.0 = new L(d,) (8.101)
L,(d;) =(15+ 0)H6.0~—15=new L{ds) (8.102)

Lody) = (01 —1.6) 1.0~ 1.0 = new L(d,) (8.103)

The second iteration of horizontal and vertical decoding, yielding the preced-
ing values, results in soft-output LLRs that are again calculated from Equation
(8.74), which is rewritten below:

L(d) = L.(x) + Loy(d) + L,(d) (8.104)
The horizontal and vertical extrinsic LLRs of Equations (8.96) through
(8.103) and the resulting decoder LLRs are displayed below. For this example, the

8.4 Turbo Codes 487



second horizontal and vertical iteration (yielding a total of four iterations) suggests
a modest improvement over a single horizontal and vertical iteration. The results
show a balancing of the confidence values amongst each of the four data decisions:

Original L {x) Measurements

1.5 | 0.1 0 | -16

02 | 03 -1.3 | 1.2

L,.(d) after second vertical decoding

1.1 | -1.0

-1.5] 1.0

L,,(d) after second horizontal decoding

The soft output is L(d ) = L.(x) + Lo(d)+ L,.(d ), which, after a total of four
iterations, yields the values for L(d ) of

26 | 25

-2.6 | 25

Observe that correct decisions about the four data bits will result, and the
level of confidence about these decisions is high. The iterative decoding of turbo
codes is similar to the process used when solving a crossword puzzle. The first pass
through the puzzie is likely to contain a few errors. Some words seem to fit. but
when the letters intersecting a row and column do not match, it is necessary to go
back and correct the first-pass answers.

8.4.4 Encoding with Recursive Systematic Codes

The basic concepts of concatenation, iteration, and soft decision decoding using a
simple product-code example have been described. These ideas are next applied to
the implementation of turbo codes that are formed by the parallel concatenation of
component convolutional codes [17, 20].

A short review of simple binary rate 1/2 convolutional encoders with con-
straint length K and memory K — 1 is in order. The input to the encoder at time & is
a bit d,, and the corresponding codeword is the bit pair (i, v;). where

K-1
Uy = zgli dk—i mOdulO—Z, g1 = O, 1 (8105)
i=0
and
K—1
Vi = > gxdi; modulo-2, g,=0,1 (8.106)
i=0

488 Channel Coding: Part 3 Chap. 8




G, ={g,;} and G, = {g,;} are the code generators, and d; is represented as a bi-
nary digit. This encoder can be visualized as a discrete-time finite impulse response
(FIR) linear system, giving rise to the familiar nonsystematic convolutional (NSC)
code, an example of which is shown in Figure 8.24. Its trellis structure can be seen
in Figure 7.7. In this example, the constraint length is K = 3, and the two code gen-
erators are described by G, = {111} and G, = {101}. 1t is well known that at large
E, /N, values, the error performance of a NSC is better than that of a systematic
code having the same memory. At small E, /N, values, it is generally the other way
around [17]. A class of infinite impulse response (IIR) convolutional codes [17] has
been proposed as building blocks for a turbo code. Such building blocks are also
referred to as recursive systematic convolutional (RSC) codes because previously
encoded information bits are continually fed back to the encoder’s input. For high
code rates, RSC codes result in better error performance than the best NSC codes
at any value of E,/N,. A binary rate 1/2 RSC code is obtained from a NSC code by
using a feedback loop, and setting one of the two outputs (u; or v;) equal to d,.
Figure 8.25a illustrates an example of such an RSC code, with K = 3, where g, is
recursively calculated as

K-1
ay=d,+ Y, gia;_; modulo-2 (8.107)
i=1

and g/ is equal to gy; if u;, = d, and to g, if v, = d,. Figure 8.25b shows the trellis
structure for the RSC code in Figure 8.25a.

It is assumed that an input bit d, takes on values of 1 or 0 with equal probabil-
ity. Furthermore, {a,} exhibits the same statistical properties as {d,} [17]. The free
distance is identical for the RSC code of Figure 8.25a and the NSC code of Figure
8.24. Similarly, their trellis structures are identical with respect to state transitions
and their corresponding output bits. However, the two output sequences {u,} and
{vi} do not correspond to the same input sequence {d;} for RSC and NSC codes.
For the same code generators, it can be said that the weight distribution of the out-
put codewords from an RSC encoder is not modified compared with the weight
distribution from the NSC counterpart. The only change is the mapping between
input data sequences and output codeword sequences.

& -
] ﬁ/
{dr) dp |—{dr-1 di-2
o+ )
Figure 8.24 Nonsystematic convolutional \l/
(NSC) code. forl

8.4 Turbo Codes 489



{ug)

{d)

State
a =00
b=10
¢ =01
d=11

+ a ——|Qp _ ap
1/ k k-1 k—2

i Figure 8.25a Recursive system-
{ve) atic convolutional (RSC) code.

Branch word
uv

Figure 8.25b Trellis structure for
the RSC code in part a).

Example 8.5 Recursive Encoders and their Trellis Diagrams

490

a) Using the RSC encoder in Figure 8.25a, verify the section of the trellis structure
(diagram) shown in Figure 8.25b.

b) For the encoder in part a), start with the input data sequence {d;} =111 0, and
show the step-by-step encoder procedure for finding the output codeword.

Solution

a) For NSC encoders, keeping track of the register contents and state transitions is a
straightforward procedure. However, when the encoders are recursive, more care
must be taken. Table 8.5 is made up of 8 rows corresponding to the 8 possible tran-
sitions in this 4-state machine. The first four rows represent transitions when the
input data bit, d,, is a binary zero, and the last four rows represent transitions
when d, is a one. For this example, the step-by-step encoding procedure can be
described with reference to Table 8.5 and Figure 8.25 as follows:

1. At any input-bit time, k, the (starting) state of a transition, is denoted by the
contents of the two rightmost stages in the register, namely a; | and a; _».

2. For any row on the table (transition on the trellis), the contents of the a, stage
is found by the modulo-2 addition of bits d;, a, _, and a, _, on that row.

3. The output code-bit sequence, iy, for each possible starting state (i.e., a = 00,
b =10, ¢ =01, and d = 11) is found by appending the modulo-2 addition of a,
and a, _, to the current data bit d; = u,.

Channel Coding: Part 3 Chap. 8




8.4

TABLE 8.5 Validation of the Figure 8.25b Trellis Section

Input bit Current bit Starting state Code bits Ending state
di=uy ay. 27 () Uy Vi day a1

0 0 0 0 0 0 0

1 1 0 0 1 1 1

0 1 0 1 0 0 1 0

0 1 1 0 1 0 1

1 0 0 1 1 1 0

0 1 0 1 0 0 1

1 0 0 1 1 1 0 0

1 1 1 1 0 1 1

It is easy to verify that the details in Table 8.5 correspond to the trellis section of
Figure 8.25b. An interesting property of the most useful recursive shift registers
used as component codes for turbo encoders is that the two transitions entering a
state should not correspond to the same input bit value (i.e., two solid lines or two
dashed lines should not enter a given state). This property is assured if the polyno-
mial describing the feedback in the shift register is of full degree, which means one
of the feedback lines must emanate from the highest-order stage, in this example,
stage a; _,.

b) There are two ways to proceed with encoding the input data sequence {d;} =

111 0. One way uses the trellis diagram, and the other way uses the encoder cir-
cuit. Using the trellis section in Figure 8.25b, we choose the dashed-line transition
(representing input bit binary one) from the state a = 00 (a natural choice for the
starting state) to the next state b =10 (which becomes the starting state for the next
input bit). We denote the bits shown on that transition as the output coded-bit se-
quence 11. This procedure is repeated for each input bit. Another way to proceed
is to build a table, such as Table 8.6, based on the encoder circuit in Figure 8.25a.
Here, time, k, is shown from start to finish (5 time instances and 4 time intervals).
Table 8.6 is read as follows:

1. At any instant of time, a data bit d, becomes transformed to g, by summing it
(modulo-2) to the bits a; _; and a, _, on the same row.

2. For example, at time k = 2, the data bit d, = 1 is tranformed to a, = 0 by
summing it to the bits a; _; and a; _, on the same k = 2 row.

3. The resulting output, u,v, = 10 dictated by the encoder logic circuitry, is the
coded-bit sequence associated with time k = 2 (actually the time interval
between times £ =2 and k = 3).

TABLE 8.6 Encoding a Bit Sequence with the Figure 8.25a Encoder

Time Input bit First stage State at time k Code bits
k dp=uy ay Ay -1 a2 U Vi
1 1 1 0 0 1 1
2 1 0 1 0 1 0
3 1 0 0 1 1 1
4 0 0 0 0 0 0
5 0 0
Turbo Codes 491



4. At time k = 2, the contents, 10, of the rightmost two stages. a, _; a; _». repre-
sents the state of the machine at the start of that transition.

5. The state at the end of that transition is seen as the contents. 01, in the two left-
most stages, a, a,_, on that same row. Since the bits shift from left to right. this
transition-terminating state reappears as the starting state for time k = 3 on the
next row.

6. Each row can be described in the same way. Thus. the encoded sequence seen
in the final column of Table 8.61s11101100.

8.4.4.1 Concatenation of RSC Codes

Consider the parallel concatenation of two RSC encoders of the type shown
in Figure 8.25. Good turbo codes have been constructed from component codes
having short constraint lengths (K =3 to 5). An example of such a turbo encoder is
shown in Figure 8.26, where the switch yielding v, provides puncturing, making the
overall code rate 1/2. Without the switch, the code rate would be 1/3. There is no
limit to the number of encoders that may be concatenated, and. in general, the
component codes need not be identical with regard to constraint length and rate.
The goal in designing turbo codes is to choose the best component codes by maxi-
mizing the effective free distance of the code [21]. At large values of E,/N,, this is
tantamount to maximizing the minimum weight codeword. However, at low values
of E,/N, (the region of greatest interest), optimizing the weight distribution of the
codewords is more important than maximizing the minimum weight codeword [20].

The turbo encoder in Figure 8.26 produces codewords from each of two com-
ponent encoders. The weight distribution for the codewords out of this parallel
concatenation depends on how the codewords from one of the component en-
coders are combined with codewords from the other encoder.

Intuitively, we should avoid pairing low-weight codewords from one encoder
with low-weight codewords from the other encoder. Many such pairings can be avoided
by proper design of the interleaver. An interleaver that permutes the data in a random
fashion provides better performance than the familiar block interleaver [22].

If the component encoders are not recursive, the unit weight input sequence
(00...00100...00) will always generate a low weight codeword at the input of
a second encoder for any interleaver design. In other words, the interleaver would
not influence the output codeword weight distribution if the component codes
were not recursive. However, if the component codes are recursive, a weight-1
input sequence generates an infinite impulse response (infinite-weight output).
Therefore, for the case of recursive codes, the weight-1 input sequence does not
yield the minimum weight codeword out of the encoder. The encoded output
weight is kept finite only by trellis termination, a process that forces the coded
sequence to terminate in such a way that the encoder returns to the zero state. In
effect, the convolutional code is converted to a block code.

For the encoder of Figure 8.26, the minimum weight codeword for each com-
ponent encoder is generated by the weight-3 input sequence (00...00111000
... 00), with three consecutive 1’s. Another input that produces fairly low weight
codewords is the weight-2 sequence (00...00100100...00). However, after
the permutations introduced by an interleaver, either of these deleterious input

492 Channel Coding: Part 3 Chap. 8




{dr} {upl

Y

RSC code

Interleaverl

ag ak -1 ap-2 5\7 {vr)

c2
(4 RSC code

{var}

Figure 8.26 Parallel concatenation of two RSC encoders.

patterns is not likely to appear again at the input to another encoder, making it un-
likely that a minimum weight codeword will be combined with another minimum
weight codeword.

The important aspect of the building blocks used in turbo codes is that they
are recursive (the systematic aspect is merely incidental). It is the RSC code’s IIR
property that protects against the generation of low-weight codewords that cannot
be remedied by an interleaver. One can argue that turbo code performance is
largely influenced by minimum weight codewords that result from the weight-2
input sequence. The argument is that weight-1 inputs can be ignored since they
yield large codeword weights due to the IIR encoder structure. For input sequences
having weight-3 and larger, a properly designed interleaver makes the occurrence
of low weight output codewords relatively rare [21-25].

8.4.5 A Feedback Decoder

The Viterbi algorithm (VA) is an optimal decoding method for minimizing the proba-
bility of sequence error. Unfortunately, the (hard-decision output) VA is not suited to
generate the a posteriori probability (APP) or soft-decision output for each decoded
bit. A relevant algorithm for doing this has been proposed by Bahl et. al. [26]. The Bahl
algorithm was modified by Berrou, et. al. [17] for use in decoding RSC codes. The APP
that a decoded data bit d, = i can be derived from the joint probability N defined by

8.4 Turbo Codes 493



N = Pldg =i, S, = m|R}Y}

where S, = m is the encoder state at time k, and R} is a received binary sequence

from time k =1 through some time N.

Thus, the APP that a decoded data bit d, = i, represented as a binary digit. is

obtained by summing the joint probability over all states, as follows:

Pld,=ilRY} = DN i=0.1

Next, the log-likelihood ratio (LLR) is written as the logarithm of the ratio of

APPs, as
2 )\/1( m
S

L(cAik) = log

The decoder makes a decision, known as the maximum a posteriori (MAP)

decision rule, by comparing L(cf «) to a zero threshold. That is,

d.=1 if L(d) >0

d,=0 if L{d) <0

For a systematic code, the LLR Q(ﬁk) associated with each decoded bitd, can be
described as the sum of the LLR of d,, out of the demodulator and of other LLRs
generated by the decoder (extrinsic information), as was expressed in Equations
(8.72) and (8.73). Consider the detection of a noisy data sequence that stems from
the encoder of Figure 8.26, with the use of a decoder shown in Figure 8.27.

Feedback loop

2k

| leaving

Xp Decoder Inter- Decoder

Deinter-

leaving

| |
| i Y1k
E m yar
t I
! I
Vb — !
! - Decoded output
| : 7
|
|
|

dp

_____________

Figure 8.27 Feedback decoder.

5 . , ‘I Lea (dp)
L+ (dp) L1 (dy) Deinter-

— | DEC1 leaving DEC2 Ly (dp)

494 Channel Coding: Part 3 Chap. 8



Assume binary modulation and a discrete memoryless Gaussian channel. The de-
coder input is made up of a set R, of two random variables x, and y,. For the bits d;
and v, at time k, expressed as binary numbers (1, 0), the conversion to received
bipolar (+1, —1) pulses can be expressed as

Xe=Qd,— 1) + i, (8.112)
and
ye= Qv — 1)+ gy (8.113)

where i, and g, are two statistically independent random variables with the same
variance o, accounting for the noise contribution. The redundant information y; is
demultiplexed and sent to decoder DECI as yj;, when v, = vy;, and to decoder
DEC2 as yy, when v, = v,,. When the redundant information of a given encoder
(C1 or C2) is not emitted, the corresponding decoder input is set to zero. Note that
the output of DEC1 has an interleaver structure identical to the one used at the
transmitter between the two component encoders. This is because the information
processed by DECI is the noninterleaved output of C1 (corrupted by channel
noise). Conversely, the information processed by DEC?2 is the noisy output of C2
whose input is the same data going into C1, however permuted by the interleaver.
DEC2 makes use of the DEC1 output, provided this output is time ordered in the
same way as the input to C2 (i.e., the two sequences into DEC2 must appear “in
step” with respect to the positional arrangement of the signals in each sequence).

8.4.5.1 Decoding with a Feedback Loop

We rewrite Equation (8.71) for the soft-decision output at time k, with the
a priori LLR L(d,) initially set to zero. This follows from the assumption that the
data bits are equally likely. Therefore,

L(dy) = L. (xy) + L.(dy) (8.114)
_ o [Pdde = 1) -
- tog [T Sy |+ @)

where L(cf,\) is the soft-decision output at the decoder, and L.(x,) is the LL.R channel
measurement, stemming from the ratio of likelihood functions p(xk |d, = i) associated
with the discrete memoryless channel model. L, d k= L(dk)[ _o Is a function of the
redundant information. It is the extrinsic information %upphed by the decoder and
does not depend on the decoder input x . Ideally L (x;) and L (d ) are corrupted by
uncorrelated noise, and thus L (d ) may be used as a new observation of d, by an-
other decoder to form an iterative process. The fundamental principle for feeding
back information to another decoder is that a decoder should never be supplied with
information that stems from its own input (because the input and output corruption
will be highly correlated).

For the Gaussian channel, the natural logarithm in Equation (8.114) is used
to describe the channel LLR L.(x,), as was done in Equations (8.77). We rewrite
the Equation (8.77¢) LLR result as

8.4 Turbo Codes 495



1 - 1\* +1\* 2
L(x) = ——(x" ) +1<xk ) - = (8.115)
2 2 o

g g

Both decoders, DEC1 and DEC2 use the modified Bahl algorithm [26]. If the
inputs L,(d;) and y, to decoder DEC2 (see Figure 8.27) are statistically indepen-
dent, then the LLR L,(d,) at the output of DEC2 can be written as

Ly(dy) = fILi(d)] + Loy (dy) (8.116)
with
L) = 5 %+ La(@) (8.117)
0'0

where f[] indicates a functional relationship. The extrinsic information Lez(d ) out
of DEC2 is a function of the sequence {L, (dk)}n < Since Ll(d,,) depends on the
observation RY, then the extrinsic information Lez(dk) is correlated with observa-
tions x, and yy;. Nevertheless, the greater |n — k| is, the less correlated are L,(d,)
and the observations x;, y,. Thus, due to the interleaving between DECI and
DEC?2, the extrinsic information Lez(dk) and the observations x,, y, are weakly
correlated. Therefore, they can be jointly used for the decoding of bit d; [17]. 1
Figure 8.27, the parameter z; = L,o(dy) feeding into DEC1 acts as a diversity effect
in an iterative process. In general, Lez(dk) will have the same sign as d,. Therefore,
L,,(d;) may increase the associated LLR and thereby improve the reliability of
each decoded data bit.

The algorithmic details for computing the LLR L(d,) of the a posteriori prob-
ability (APP) for each data bit has been described by several authors [17-18, 30].
Suggestions for decreasing the implementational complexity of the algorithms can
be found in [27-31]. A reasonable way to think of the process that produces APP
values for each data bit is to imagine implementing a maximum likelihood se-
quence estimation or Viterbi algorithm (VA) and computing it in two directions
over a block of code bits. Proceeding with this bi-directional VA in a sliding-
window fashion—and thereby obtaining metrics associated with states in the for-
ward and backward direction—allows computing the APP for each data bit repre-
sented in the block. With this view in mind, the decoding of turbo codes can be
estimated to be at least two times more complex than decoding one of its compo-
nent codes using the VA.

8.4.5.2 Turbo Code Error-Performance Example

Performance results using Monte Carlo simulations have been presented in
[17] for a rate 1/2, K =5 encoder implemented with generators G;={11111}and
G, ={1000 1}, using parallel concatenation and a 256 x 256 array interleaver. The
modified Bahl algorithm was used with a data block length of 65,536 bits. After 18
decoder iterations, the bit-error probability Py was less than 10 at E,/N, = 0.7 dB.
The error-performance improvement as a function of the number of decoder itera-
tions is seen in Figure 8.28. Note that as the Shannon limit of —1.6 dB is ap-
proached, the required system bandwidth approaches infinity, and the capacity

496 Channel Coding: Part 3 Chap. 8




Ll

]
1

Uncoded

Ll

[$)]
TTTTTTT

1

T

Pg 5

T T
Pl

T T TTTTT] T
|

| IIIIII|

T
i

105 lteration 1

‘|||||||
.
[o0]
w
L]

Ey /Ny (dB)

Figure 8.28 Bit-error probability as a function of £, /N, and multiple it-
erations.

REF: Berrou, C., Glavieux, A., and Thitimajshima, P, “Near Shannon
Limit Error-Correcting Coding and Decoding: Turbo Codes,” IEEE Proc.
of Int’l. Conf. on Communications, Geneva, Switzerland, May 1993 (ICC
'93), pp. 1064-1070.

(code rate) approaches zero. Therefore, the Shannon limit represents an interest-
ing theoretical bound, but it is not a practical goal. For binary modulation, several
authors use Pz = 10~ and E,/N, = 0.2 dB as a pragmatic Shannon limit reference
for a rate 1/2 code. Thus, with parallel concatenation of RSC convolutional codes
and feedback decoding, the error performance of a turbo code at Pg = 1073 is within
0.5 dB of the (pragmatic) Shannon limit. A class of codes that use serial instead of
parallel concatenation of the interleaved building blocks has been proposed. It has
been suggested that serial concatenation of codes may have superior performance
[28] to those that use parallel concatenation.

8.4 Turbo Codes 497



8.4.6 The MAP Algorithm

The process of turbo-code decoding starts with the formation of a posteriori proba-
bilities (APPs) for each data bit, which is followed by choosing the data-bit value
that corresponds to the maximum a posteriori (MAP) probability for that data bit.
Upon reception of a corrupted code-bit sequence, the process of decision making
with APPs, allows the MAP algorithm to determine the most likely information bit
to have been transmitted at each bit time. This is unlike the Viterbi algorithm
(VA), where the APP for each data bit is not available. Instead. the VA finds the
most likely sequence to have been transmitted. There are, however. similarities in
the implementation of the two algorithms. (See Section 8.4.6.3.) When the decoded
P is small, there is very little performance difference between the MAP and a soft-
output Viterbi algorithm called SOVA. However, at low E,,/N, and high P values.
the MAP algorithm can outperform SOVA decoding by 0.5 dB or more {30, 31].
For turbo codes, this can be very important, since the first decoding iterations can
yield poor error performance. The implementation of the MAP algorithm proceeds
somewhat like performing a Viterbi algorithm in two directions over a block of
code bits. Once this bi-directional computation yields state and branch metrics for
the block, the APPs and the MAP can be obtained for each data bit represented
within the block. We describe here a derivation of the MAP decoding algorithm for
systematic convolutional codes assuming an AWGN channel model. as presented
by Pietrobon [30]. We start with the ratio of the APPs, known as the likelihood
ratio A(d,), or its logarithm, L(d,) called the log-likelihood ratio (LLR), as shown
earlier in Equation (8.110):

)\l,m
M

A(dy) = 2—
k E )\(Il,m

m

(8.118a)

and

PDIVE

Id,) = log | 2— (8.118b)

)\0, m
; ¥

Here \;™—the joint probability that data d, =/ and state S; = m, conditioned
on the received binary sequence R1{', observed from time k = 1 through some time
N—is described by Equation (8.108), and rewritten below:

N = P(d, = i,S, = m | RY) (8.119)

R} represents a corrupted code-bit sequence after it has been transmitted
through the channel, demodulated, and presented to the decoder in soft-decision
form. In effect, the MAP algorithm requires that the output sequence from the de-

498 Channel Coding: Part 3 Chap. 8




modulator be presented to the decoder as a block of N bits at a time. Let Ry’ be
written as follows:

RY = {R{"L, R, R} 1} (8.120)

To facilitate the use of Bayes’ rule, Equation (8.119) is partitioned using the letters
A, B, C, D, and Equation (8.120). Thus, Equation (8.119) can be written in the form

)\5\3’” = P(dk = i,Sk = m IRllcil, Rk’ RkN+1)
—_— e

A B ¢ D (8.121)
Recall from Bayes’ rule that
P(AB, G, D) = P(A, B, C, D) _ P(BIA, C, D) P(A, C, D)
P(B, G D) P(B, C D)
_ P(BIA, C D)P(D|A, C) P(A, C) (8.122)
P(B, C, D)
Hence, application of this rule to Equation (8.121) yields
N = P(RE'dy = i, S, = m, RY) P(RY11dy = i, S = m., Ry) (8.123)

X P(d =i, Sy = m, Ry)/P(RY)

where RY = {R,. RY. ). Equation (8.123) can be expressed in a way that gives
greater meaning to the probability terms contributing to Az™ In the sections that
follow, the three numerator factors on the right side of Equation (8.123) will be de-
fined and developed as the forward state metric, the reverse state metric, and the
branch metric.

8.4.6.1 The State Metrics and the Branch Metric

We define the first numerator factor on the right side of Equation (8.123) as
the forward state metric at time k and state m, and denote it as af. Thus, fori=1,0

IRRELEVANT IRRELEVANT

—— 8.124
PRV @y =7 Se = m. RY) = P(RETIS, = m) A (8.129)

Note that d, =i and R} are designated as irrelevant, since the assumption that
S, = m implies that events before time k are not influenced by observations after
time k. In other words, the past is not affected by the future; hence, P(R%1yis in-
dependent of the fact that d, =i and the sequence R}. However, since the encoder
has memory, the encoder state S, = m is based on the past, so this term is relevant
and must be left in the expression. The form of Equation (8.124) is intuitively satis-
fying since it presents the forward state metric «}, at time , as being a probability
of the past sequence that is only dependent on the current state induced by this se-
quence and nothing more. This should be familiar to us from the convolutional en-
coder and its state representation as a Markov process in Chapter 7.

Similarly, the second numerator factor on the right side of Equation (8.123)
represents a reverse state metric Y, at time k and state m, described by

8.4 Turbo Codes 499



PR lde=1i,S,=m,Ry) = P(RY. (| Sksy = f(im)) éB‘JC(i'ln) (8.125)

where f(i, m) is the next state, given an input / and state m, and B/".7’ is the reverse
state metric at time k + 1 and state f(i, m). The form of Equation (8.125) is intu-
itively satisfying since it presents the reverse state metric B ;, at future time k + 1.
as being a probability of the future sequence, which depends on the state (at future
time k + 1), which in turn is a function of the input bit and the state (at current time
k). This should be familiar to us because it engenders the basic definition of a
finite-state machine (see Section 7.2.2).

We define the third numerator factor on the right side of Equation (8.123) as
the branch metric at time k and state 1, which we denote 8}, Thus, we write

P(d =i, S, = m, R)AS™ (8.126)

Substituting Equations (8.124) through (8.126) into Equation (8.123) yields
the following more compact expression for the joint probability, as follows:

o 3" B

& 8.127
YRR (120
Equation (8.127) can be used to express Equation (8.118) as
Sap ot Bl
A@d,) = = (8.128a)

Ea;{n 8(/2‘,” B];((glm)

m

and

> o 8} B
L(d,) =lo m 8.128b
=108 s o g (1250

m

where A(d)) is the likelihood ratio of the k-th data bit, and L(d,) the logarithm of
A(dy), is the LLR of the k-th data bit, where the logarithm is generally taken to the
base e.

8.4.6.2 Calculating the Forward State Metric

Starting from Equation (8.124), o} can be expressed as the summation of all
possible transition probabilities from time & — 1, as follows:

1
of = > D Py =, S-y =m',RES, =m) (8.129)
=0
We can rewrite R~!as {R%~2 R, ,},and from Bayes’ Rule,

500 Channel Coding: Part 3 Chap. 8




1
af = > D PRYTSe=m,di =), Sk =m' Ry))
m' j=0
. ) 8.130a
X Pdy =], Sy =m', Ry | Sy = m) ( :

RIS, = b(j,m)) P(dy_y = j, Sk—y = b(j.m). R,—\) (8.130b)

Il
HY
!

where b(j, m) is the state going backwards in time from state m, via the previous
branch corresponding to input j. Equation (8.130b) can replace Equation (8.130a).
since knowledge about the state m’ and the input j, at time k — 1, completely de-
fines the path resulting in state S, = m. Using Equations (8.124) and (8.126) to sim-
plify the notation of Equation (8.130b) yields

2 a3 (8.131)
j=0
Equation (8.131) indicates that a new forward state metric at time k and state
m is obtained by summing two weighted state metrics from time & — 1. The weight-
ing consists of the branch metrics associated with the transitions corresponding to
data bits 0 and 1. Figure 8.29a illustrates the use of two different types of notation
for the parameter alpha. We use aft ) for the forward state metric at time k — 1,
when there are two possible underlying states (depending upon whether j=0or 1).
And we use o} for the forward state metric at time &, when the two possible transi-
tions from the previous time terminate on the same state m at time k.

j= i\‘\\ﬁ}c m
Tl pf U, m

Bk+1

k +

(a) Forward state metric: (b) Reverse state metric:
o= l;e(%) m) 80’_11 ©,m) oci_(l”") 8;,};(1,m) Bl = B2(0 m) 50 m 13)}:91’ m) 5}5m
Where b(j, m) is the state going Where f(j, m) is the next state

backwards in time corresponding given an input j and state m

to an input j

Branch metric:

3; ™= m, exp (xk up + v, v m)

Figure 8.29 Graphical representation for calculating of" and B;".
REF: Pietrobon, S.S., “implementation and Performance of a Turbo/Map Decoder,”
Intl. J. of Satellite Communications, vol. 16, Jan.-Feb. 1998, pp. 23-46.

8.4 Turbo Codes 501



8.4.6.3 Calculating the Reverse State Metric
Starting from Equation (8.125), where p/i-% = P[RY, | | Si.1 = f(i, m)], we have
7 =PRY|Sc=m) = PR, RY.. | Sp = m) (8.132)

We can express B} as the summation of all possible transition probabilities to time
k + 1, as follows:

DY
2

Using Bayes’ Rule,

P(dy = j, Sgs1 = m', Ry, RII:]+1 | Sy =m) (8.133)

1
=0

J

1
BZ'" = E E P(Rllchrl‘Sk:m’dk :j35k+1 = m’*Rk)

m' j=0
X P(de=j,Ske1 =m\ RS =m)

S, =m and d, = j in the first term on the right side of Equation (8.134) com-
pletely defines the path resulting in S, , ; = f(j, m), the next state given an input j
and state m. Thus, these conditions allow replacing S, ., = m' with S, = m in the
second term of Equation (8.134), yielding

(8.134)

1
By = %P(R/CJH |Skv1 = fj,m)) P(dy =, S = m. R)
" (8.135)

1
L
j=0

Equation (8.135) indicates that a new reverse state metric at time k and state
m is obtained by summing two weighted state metrics from time k + 1. The weight-
ing consists of the branch metrics associated with the transitions corresponding to
data bits 0 and 1. Figure 8.29b illustrates the use of two different types of notation
for the parameter beta. First, we use B’ U:m for the reverse state metric at time
k + 1, when there are two possible underlying states (depending on whether j =0
or 1). Second, we use B7% for the reverse state metric at time k, where the two possi-
ble transitions arriving at time k + 1 stem from the same state m at time k. Fig-
ure 8.29 presents a graphical illustration for calculating the forward and reverse
state metrics.

Implementing the MAP decoding algorithm has some similarities to imple-
menting the Viterbi decoding algorithm (see Section 7.3). In the Viterbi algorithm,
we add branch metrics to state metrics. Then we compare and select the minimum
distance (maximum likelihood) in order to form the next state metric. The process
is called Add-Compare-Select (ACS). In the MAP algorithm, we multiply (add, in
the logarithmic domain) state metrics by branch metrics. Then, instead of compar-
ing them, we sum them to form the next forward (or reverse) state metric, as seen
in Figure 8.29. The differences should make intuitive sense. With the Viterbi algo-
rithm, the most likely sequence (path) is being sought; hence, there is a continual
comparison and selection to find the best path. With the MAP algorithm, a soft

502 Channel Coding: Part 3 Chap. 8




N
O

number (likelihood or log-likelihood) is being sought; hence, the process uses all
the metrics from all the possible transitions within a time interval, in order to come
up with the best overall statistic regarding the data bit associated with that time
interval.

8.4.6.4 Calculating the Branch Metric
We start with Equation (8.126),
8™ = P(d, =1i,S, = m,Ry) (8.136)
= P(R/ld, = i,S; =m) P(S, =mld, =i) P(d, = i)

where R, represents the sequence {x; y}, x; is the noisy received data bit, and y, is
the corresponding noisy received parity bit. Since the noise affecting the data and
the parity are independent, the current state is independent of the current input
and can therefore be any one of the 2" states, where v is the number of memory ele-
ments in the convolutional code system. That is, the constraint length K of the code
is equal to v+ 1. Hence,

. 1
P(Sk:m‘dkzl)zz_‘u

and

, 1-r’
8" = P(xildy = i. 8, = m) P(yildy = i, S = m) =, (8.137)
where m} is defined as P(d, = i), the a priori probability of d,.

From Equation (1.25d) in Chapter 1, the probability P(X, = x,) of a random
variable, X, taking on the value x;, is related to the probability density function

(pdf) p, (x;), as follows:
P(X =x;) = ka(xk) dxy (8.138)

For notational convenience, the random variable X,, which takes on values
X, is often termed “the random variable x;”, which represents the meanings of x,
and y; in Equation (8.137). Thus, for an AWGN channel, where the noise has zero
mean and variance o°, we use Equation (8.138) in order to replace the probability
terms in Equation (8.137) with their pdf equivalents, and we write

1

’IT;( 1 Xk—u;( 2 1 yk_V;(‘m 2
R s P RV .
22N 27w 2 g g 2no P 2 o g

where u; and v, represent the transmitted data bits and parity bits, respectively (in
bipolar form), and dx, and dy, are the differentials of x, and y,, and get absorbed
into the constant A;, below. Note that the parameter u!, represents data that have
no dependence on the state m. However, the parameter v ™ represents parity that
does depend on the state m, since the code has memory. Simplifying the notation
by eliminating all terms that will appear in both the numerator and denominator of
the likelihood ratio, resulting in cancellation, we can write

8.4 Turbo Codes 503



. ) 1
3™ = Ap i exp {0 (e tlle + vy v;”’)} (8.140)

If we substitute Equation (8.140) into Equation (8.128a), we obtain

1.m
Vi
Saz exp (2250 ) gty

. 2

A(dy) = T exp ( x") m — (8.141a)
o
S exp (Y24 ) gl

2
= m, exp (%k) - (8.141b)

g

and

L(dy) = L(dy) + L. (xi) + Lo(dy) (8.141c)

where , = /7 is the input a priori probability ratio (prior likelihood), and 7§ is
the output extrinsic likelihood, each at time k. In Equation (8.141b), one can
think of ¢ as a correction term (due to the coding) that changes the input
prior knowledge about a data bit. In a turbo code, such correction terms are passed
from one decoder to the next, in order to improve the likelihood ratio for each data
bit, and thus minimize the probability of decoding error. Thus, the decoding
process entails the use of Equatlon (8.141b) to compute A(d,) for several itera-
tions. The extrinsic likelihood %, resulting from a particular iteration replaces the
a priori likelihood ratio ., for the next iteration. Taking the logarithm of
A(d,) in Equation (8.141b) yields Equation (8.141c), which is the same result
provided by Equation (8.71) showing that the final soft number L(d ) is made up of
three LLR terms—the a priori LLR, the channel-measurement LLR, and the
extrinsic LLR. i

The MAP algorithm can be implemented in terms of a likelihood ratio A(d,),
as shown in Equation (8.128a) or (8.141a,b). However, implementation using likeli-
hood ratios is very complex because of the multiply operations that are required.
By operating the MAP algorithm in the logarithmic domain [30, 31], as described
by the LLR in Equation (8.128b) or (8.141c), the complexity can be greatly
reduced by eliminating the multiply operations.

8.4.7 MAP Decoding Example

Figure 8.30 illustrates a MAP decoding example. Figure 8.30a shows a simple sys-
tematic convolutional encoder, with constraint length, K = 3, and rate . The input
data consists of the sequence d = {1, 0, 0}, corresponding to the times k=1, 2, 3. The
output code-bit sequence, being systematic, is formed by consecutively taking one
bit from the sequence u={1, 0, 0}, followed by one bit from the parity-bit sequence
v ={1, 0, 1}. In each case, the leftmost bit is the earliest bit. Thus, the output se-
quence is 1 1000 1, or in bipolar form the sequence is +1 +1 -1 —1 —1 +1. Figure
8.30b shows the results of some postulated noise vectors m, and n,, having cor-

504 Channel Coding: Part 3 Chap. 8




505

“(onewsaisAs ‘7, syel ‘g =) Buipodep dvi jo sjdwex3  0g'8 anbidy

weiBeip s1jja43 1op0o2a( (9)

o= |ILE = (€ o= (L€ = ¢ = [ 52000 =@
moumo_ ¢Epy1 houmo_ epy1 £0°¢ hmhmvmo_ tpr1
0=4¢ o=9d trL=g¢ vLrL=9¢

Gpo="% 0G="2 0="» oL 0=%
LlL=p
Lo=2
oL=9
00="0
a1e1s

asiou snid (sejodiq) (z/L 8 ‘e =3 @
S1iq |8UURYD PAAIBODY (q) J9p0OIUS |BUOIIN|OALOD 211BWBISAG (B) 3
o]
{1’01} =4 O
o
£
. P P | + ) =
{50 ‘G0 'G0r =qu= ¥ O/ =
{Zv 'zo 'goy =4
ooyt ———

{90- ‘g0 ‘G1} =X jauuey) <
- o

€=§z=9L=9 {0'0'Ly=p

{00ty = =



rupted sequences u and v, so they are now designatedasx =u + n,andy = v + n,.
As shown in Figure 8.30b, the demodulator outputs arriving at the decoder corre-
sponding to the times k = 1, 2, 3, have values of 1.5, 0.8, 0.5, 0.2, -0.6, 1.2. Also
shown are the a priori probabilities of a data bit being 1 or 0, designated as =" and
w°, respectively, and assumed to be equally likely for all k times. For this example,
all information is now available to calculate the branch metrics and the state met-
rics, and enter their values onto the decoder trellis diagram of Figure 8.30c. On the
trellis diagram, each transition occurring between times & and k + 1 corresponds to
a data bit d, that appears at the encoder input at the transition-start time k. At time
k, the encoder will be in some state m, and at time & + 1 it transitions to a new state
(possibly the same state). When such a trellis diagram is used to depict a sequence
of code bits (representing N data bits), the sequence is characterized by N transi-
tion intervals and N + 1 states (from start to finish).

8.4.7.1 Calculating the Branch Metrics

We start with Equation (8.140), with 7/, = 0.5 (for this exercise, data bits are
assumed equally likely for all time), and for simplicity assume that A, = 1 for all
time and that ¢? = 1. Thus, 8}” becomes

M = 0.5 exp (xg il + i vi™) (8.142)

What basic receiver function does Equation (8.142) resemble? The expres-
sion looks somewhat like a correlation process. At the decoder, a pair of receptions
(data-bit related x,, and parity-bit related y,) arrive at each time k. The branch
metric is calculated by taking the product of the received x; with each of the proto-
type signals i, and similarly the product of the received y, with each of the proto-
type signals v,. For each trellis transition, the magnitude of the branch metric will
be a function of how good a match there is between the pair of noisy receptions
and the code-bit meaning of that trellis transition. For k = 1, Equation (8.142) is
used with the data in Figure 8.30b for evaluating eight branch metrics (a transition
from each state m and for each data value i), as shown below. For notational sim-
plicity, we designate the trellis states as follows: a = 00, b = 10, ¢ = 01, d = 11. Note
that the code-bit meaning, u, v,, of each trellis transition is written on the transi-
tion in Figure 8.30c (for k = 1 only) and was obtained from the encoder structure in
the usual way. (See Section 7.2.4.) Also, for the trellis transitions of Figure 8.30c,
the convention that dashed lines and solid lines correspond to the underlying data
bits 1 and 0, respectively, is used:

87" = 3k 7P = 0.5 exp [(1.5) (1) + (0.8) (1)] = 5.0
T =8P = 0.5 exp [(1.5) (—1) + (0.8) (=1)] = 0.05
BT =8~ = 05exp [(1.5) (1) + (0.8) (=1)] = 1.0
o =8¢~ = 05 exp [(1.5) (—1) + (0.8) (1)] = 0.25

Next, we repeat these calculations using Equation (8.142) for the eight branch
metric values at time k =2:

506 Channel Coding: Part 3 Chap. 8




SLm=a = §Lm=b = 0.5 exp [(0.5
oy = 8=t = 0.5exp [(1.5
[(0.5
[(0.5

) (1) + (02)(1)] = 1.0
) (1) + (0.2) (-1)] = 025
y(1) + (0.2) (=1)] = 0.67
) (—1) + (0.2) (1)] = 0.37

dpm=c = dpm=4 = 0.5 exp

8077 = 8pm=4 = 0.5 exp

Again, we repeat the calculations for the eight branch metric values at time k = 3:
dLm=a = 3bm=b = 0.5exp [(—0.6) (1) + (1.2) (1)] = 0.91
8o = 3yt = 0.5exp [(—0.6) (—1) + (1.2) (-1)] =027
dhm=c = §Lm=4 = 05exp [(—0.6) (1) + (12)(=1)] = 0.08
ghm=c = §2m=d = 0.5exp [(—0.6) (1) + (1.2) (1)] = 3.0

8.4.7.2 Calculating the State Metrics

Once the eight values of 8™ are computed for each k, the forward state met-
rics o/’ can be calculated with the help of Figures 8.29, 8.30c, and Equation (8.131),
rewritten below

1
oy = S apHm bl

Assume that the encoder starting state is a = 00. Then,
o'=f =10 and oS =off =af5 =0
ol = (0.05)(1.0) + (0.25)(0) = 0.05
=P = (5.0)(1.0) + (1.0)(0) = 5.0
of S =S =0

and so forth, as shown on the trellis diagram of Figure 8.30c. Similarly, the reverse
state metric 7 can be calculated with the help of Figures 8.29, 8.30c, and Equation
(8.135), rewritten below

1
Br = > 8" B4
j=0

The data sequence and the code in this example were purposely chosen so
that the final state of the trellis at time k = 4 is the a = 00 state. Otherwise, it would
be necessary to use tail bits to force the final state into such a known state. Thus,
for this example, illustrated in Figure 8.30, knowing that the final state is a = 00, the
reverse state metrics can be calculated as follows:

v-4 =10 and ch";b =By = B?:ztd =0

m=¢ = (0.27)(1.0) + (0.91)(0) = 0.27

8.4 Turbo Codes 507



=b _ =d _
k=3 = Bi=y' =

= (3.0)(1.0) + (0.08)(0) = 3.0

and so forth. All the reverse state metric values are shown on the trellis of Figure 8.30c.

8.4.7.3 Calculating the Log-Likelihood Ratio

Now that the metrics 8, «, and B have all been computed for the code-bit se-
quence in this example, the turbo decoding process can use Equation (8.128) or
(8.141) for finding a soft decision, A(dk) or L(dk) for each data bit. When using
turbo codes, this process can be iterated several times to improve the reliability of
that decision. This is generally accomplished by using the extrinsic likelihood pa-
rameter of Equation (8.141b) to compute and re- compute the likelihood ratio A(d o)
for several iterations. The extrinsic likelihood w¢ of any iteration is used to replace
the a priori likelihood ratio m, , ; for the next iteration.

For this example, let us now use the metrics calculated above (with a single
pass through the decoder). We choose Equation (8.128b) to compute the LLR for
each data bit in the sequence {d,}, and then use the decision rules of Equation
(8.111) to transform the resulting soft numbers into hard decisions. For k = 1, omit-
ting some of the zero factors, we obtain

. 1.0 X 5.0 X 0.75 3.75
L@ =1 —log [ 22} =3
(dy) = log <1.0 X 0.05 X 0.07> log <0.0035> 3.0

For k =2, again omitting some of the zero factors, we obtain

L) =1 [ (0.05 X 1.0 X 0) + (5.0 X 1.0 X 0) } | (0) o
(o) =log | 05 % 025 x 027) + (5.0 X 025 x 30) ) ~ &\ 375

For k =3, we obtain

n (0.01 X 0.91 X 0) + (0.05 X 0.91 X 0)
L(d;) = log
(0.01 X 027 X 1.0) + (0.05 x 0.27 X 0)

+(1.25 X 0.08 X 0) + (5.0 X 0.08 X 0)}
+(1.25 X 3.0 X 1.0) + (5.0 X 3.0 X 0)

) -
t\375

Using Equation (8.111) to make the final decisions about the bits at times k =
1,2, 3, the sequence is decoded as {1 0 0}. This is clearly correct, given the specified
input to the encoder.

8.4.7.4 Shift Register Representation for Finite State Machines

The shift registers used throughout this book, whether feed-forward or feed-
back, are mostly represented with storage stages and connecting lines. It is impor-
tant to point out that it is often useful to represent an encoder shift register,

508 Channel Coding: Part 3 Chap. 8




particularly a recursive encoder, in a slightly different way. Some authors use
blocks labeled with the letter D or T to denote time delays (typically 1-bit delays).
The junctions outside the blocks, carrying voltage or logic levels. represent the
storage in the encoder between clock times. The two formats—storage blocks ver-
sus delay blocks—do not change the characteristics or the operation of the underly-
ing process in any way. For some finite-state machines, with many recursive
connections, it may be somewhat easier to track the signal when the delay-block
format is used. Problems 8.23 and 8.24 employ such encoders in Figures P8.2 and
P8.3, respectively. For the storage-stage format, the current state of a machine is
described by the contents of the rightmost K — 1 stages. For the delay-block format,
the current state is similarly described by the logic levels at the outputs of the right-
most K — 1 delay blocks. For both formats, the relationship between memory v and
constraint length K is the same, that is v = K — 1. Thus, in Figure P8.2, three delay
blocks means that v =3 and K = 4. Similarly, in Figure P8.3, two delay blocks means
that v=2and K =3.

8.5 CONCLUSION

In this chapter, we examined Reed-Solomon (R-S) codes, an important class of non-
binary block codes, particularly useful for correcting burst errors. Because coding ef-
ficiency increases with code length, R-S codes have a special attraction. They can be
configured with long block lengths (in bits) with less decoding time than other codes
of similar lengths. That is because the decoder logic works with symbol-based, not
bit-based, arithmetic. Hence, for 8-bit symbols, the arithmetic operations would all
be at the byte level. This increases the complexity of the logic, compared with binary
codes of the same length, but it also increases the throughput.

We next described a technique called interleaving, which allows the popular
block and convolutional coding schemes to be used over channels that exhibit
bursty noise or periodic fading without suffering degradation. We used the CD dig-
ital audio system as an example of how both R-S coding and interleaving play an
important role in ameliorating the effects of burst noise.

We described concatenated codes and the concept of turbo coding, whose
basic configuration depends on the concatenation of two or more component
codes. Basic statistical measures, such as a posteriori probability and likelihood
also were reviewed. We then used these measures for describing the error perfor-
mance of a soft-input/soft-output decoder. We showed how performance is im-
proved when soft outputs from concatenated decoders are used in an iterative
decoding process. We then proceeded to apply these concepts to the parallel con-
catenation of recursive systematic convolutional (RSC) codes, and we explained
why such codes are the preferred building blocks in turbo codes. A feedback de-
coder was described in general ways, and its remarkable performance was pre-
sented. We next developed the mathematics of a maximum a posteriori (MAP)
decoder, and used a numerical example (traversing a trellis diagram in two direc-
tions) that resulted in soft-decision outputs.

Conclusion 509



APPENDIX 8A THE SUM OF LOG-LIKELIHOOD RATIOS

Following are the algebraic details yielding the results shown in Equation (8.72).
rewritten below:

Lidy) L{d5)
e hte 2 ) (8A.1)

1+ eL(dl)eL(k([l‘J

L(d\) HL(d2) AL(d D d>) = log, (

We start with a likelihood ratio of the APP that a data bit equals +1 com-
pared to the APP that it equals —1. Since the logarithm of this likelihood ratio.
denoted L(d), has been conveniently taken to the base e, it can be expressed as

Lid) =1 [P(d=+1)}_ { P(d = +1) } A
@ =loee | pa=—ny] =18 [T pa=+1) (842
so that
P(d = +1
o L) — [ ( ) } (8A.3)
1-Pd= +1)
Solving for P(d + 1), we obtain
el — el % P(d = +1) = P(d = +1) (8A.4)
el =P(d=+1) X [1 + "] (8A.5)
and
o L@
Observe from Equation 8A.6 that
el 1
P(d:—l)=1—P(d=+1):1—]+6L(d)=1+eud) (8A.7)

Let d; and d, be two statistically independent data bits taking on voltage
values of +1 and —1 corresponding to logic levels 1 and 0 respectively.

When formatted in this way, the modulo-2 summation of d, and d, vields —1
whenever d; and d, have identical values (both +1 or both —1), and the summation
yields +1 whenever d; and d, have different values. Then

Pdi®d,=1) }
Pld,®dd, = —1)

=1 P(d;=+1) XP(dy,=—1) + [1 = P(d, = +1)][1 = P(d, = —1)]
T [P(dl = +1) X P(d, = +1) + [1 — P(d,

L{d, @ d,) = log, {

I
+
=
=

|
pa

S

I
+
=

(8A.8)

510 Channel Coding: Part 3 Chap. 8




Using Equations (8A.6) and 8A.7) to replace the probability terms of Equa-

tion (8A.8), we obtain

( e L@y )( e L)
1+eh 1 +eL(d2)> <l+eL<d]><] +el‘(‘12J)
L(d\®d,) = 27 ) - : (8A.9)
1+ e“”l 1+ et 1+e" L+ et
( Ldy) el )
1+ et [1+e"
= log, @y L<d2) 1 (8A.10)
( (11 1+ eL(d2> )
L{dy) L(dy)
e + e~2
= log, {1 T eL(dz)eL(dZ)j| (8A.11)

REFERENCES

10.

12.

Gallager, R. G., Information Theory and Reliable Communication, John Wiley and
Sons, New York, 1968.

Odenwalder, J. P., Error Control Coding Handbook, Linkabit Corporation, San Diego,
CA, July 15, 1976.

. Berlekamp, E. R, Peile, R. E., and Pope, S. P., “The Application of Error Control to

Communications,” IEEE Communications Magazine, vol.25,n0. 4, April 1987, pp. 44-57.
Hagenauer, J., and Lutz, E., “Forward Error Correction Coding for Fading Compensa-
tion in Mobile Satellite Channels,” IEEE J. on Selected Areas in Comm., vol. SAC-5,
no. 2, February 1987, pp. 215-225.

Blahut, R. E., Theory and Practice of Error Control Codes, Addison-Wesley Publishing
Co., Reading, Massachusetts, 1983.

Reed-Solomon Codes and Their Applications, ed. Wicker, S. B., and Bhargava, V. K.,
IEEE Press, Piscataway, New Jerscy, 1983.

Ramsey, J. L., “Realization of Optimum Interleavers, IEEE Trans. Inform. Theory, vol.
1T-16, no. 3, May 1970, pp 338-345.

Forney, G. D., “Burst-Correcting Codes for the Classic Bursty Channel,”/EEE Trans.
Commun. Technol., vol. COM-19, Oct. 1971, pp. 772-781.

Clark, G. C., Jr., and Cain, J. B., Error-Correction Coding for Digital Communications,
Plenum Press, New York, 1981.

J. H. Yuen, et. al., “Modulation and Coding for Satellite and Space Communications,”
Proc. IEEE, vol. 78, no. 7, July 1990, pp. 1250-1265.

. Peek, J. B. H., “Communications Aspects of the Compact Disc Digital Audio System,”

IEEE Communications Magazine, vol. 23, no. 2, February 1985, pp. 7-20.
Berkhout, P. I., and Eggermont, L. D. J., “Digital Audio Systems,” IEEE ASSP Maga-
zine, October 1985, pp. 45-67.

References 511



13.

16.
17.

18.

19.

20.

21.

22.

24.

25.

26.

27.

28.

29.

512

Driessen, L. M. H. E., and Vries, L. B., “Performance Calculations of the Compact Disc
Error Correcting Code on Memoryless Channel,” Fourth Int’l. Conf. Video and Data
Recording, Southampton, England, April 20-23, 1982, IERE Conference Proc #54.
pp. 385-395.

. Hoeve, H., Timmermans, J., and Vries, L. B., “Error Correction in the Compact Disc

System,” Philips Tech. Rev., vol. 40, no. 6, 1982, pp. 166-172.

. Pohimann, K. C., The Compact Disc Handbook, A-R Editions, Inc.. Madison. Wiscon-

sin, 1992.

Forney, G. D.. Jr., Concatenated Codes, Cambridge, Massachusetts: M. I. T. Press. 1966.
Berrou, C., Glavieux, A., and Thitimajshima, P. “Near Shannon Limit Error-Correcting
Coding and Decoding: Turbo Codes,” IEEE Proceedings of the Int. Conf. on Communi-
cations, Geneva, Switzerland, May 1993 (ICC *93), pp. 1064-1070.

Berrou, C. and Glavieux, A. “Near Optimum Error Correcting Coding and Decoding:
Turbo-Codes,” IEEE Trans. On Communications, vol. 44, no. 10. October 1996. pp.
1261-1271.

Hagenauer, J. “Iterative Decoding of Binary Block and Convolutional Codes.” IEEE
Trans. On Information Theory, vol. 42, no. 2, March 1996, pp. 429-445.

Divsalar, D. and Pollara, F. “On the Design of Turbo Codes.” TDA Progress Report
42-123, Jet Propulsion Laboratory, Pasadena, California, November 15. 1995,
pp- 99-121.

Divsalar, D. and McEliece, R. J. “Effective Free Distance of Turbo Codes.” Electronic
Letters, vol. 32, no. 5, Feb. 29,1996, pp. 445-446.

Dolinar, S. and Divsalar, D. “Weight distributions for Turbo Codes Using Random and
Nonrandom Permutations,” TDA Progress Report 42-122, Jet Propulsion Laboratory.
Pasadena, California, August 15, 1995, pp. 56-65.

. Divsalar, D. and Pollara, F. “Turbo Codes for Deep-Space Communications,” TDA

Progress Report 42-120, Jet Propulsion Laboratory, Pasadena. California. February 15.
1995, pp. 29-39.

Divsalar, D. and Pollara, F. “Multiple Turbo Codes for Deep-Space Communications.”™
TDA Progress Report 42-121, Jet Propulsion Laboratory, Pasadena. California. May 15.
1995, pp. 66-77.

Divsalar, D. and Pollara, F. “Turbo Codes for PCS Applications.” Proc. ICC 95, Seat-
tle, Washington, June 18-22, 1995.

Bahl, L. R., Cocke, J., Jelinek, F. and Raviv, J. “Optimal Decoding of Linear Codes for
Minimizing Symbol Error Rate,” Trans. Inform. Theory, vol. IT-20, March 1974.
pp- 248-287.

Benedetto, S. ct. al., “Soft Output Decoding Algorithm in Iterative Decoding of Turbo
Codes,” TDA Progress Report 42—124, Jet Propulsion Laboratory, Pasadena, Califor-
nia, February 15, 1996, pp. 63-87.

Benedetto, S. et. al., “A Soft-Input Soft-Output Maximum A Posteriori (MAP) Module
to Decode Parallel and Serial Concatenated Codes,” TDA Progress Report 42-127, Jet
Propulsion Laboratory, Pasadena, California, November 15, 1996. pp. 63-87.
Benedetto, S. et. al., “A Soft-Input Soft-Output APP Module for Iterative Decoding of
Concatenated Codes,” IEEE Communications Letters, vol. 1, no. 1, January 1997.
pPp. 22-24.

. Pietrobon, S., “Implementation and Performance of a Turbo/MAP Decoder.” Int’l. J.

Satellite Commun., vol. 15, Jan-Feb 1998, pp. 23-46.

Channel Coding: Part 3 Chap. 8




31. Robertson, P., Villebrun, E., and Hoeher, P., “A Comparison of Optimal and Sub-
Optimal MAP Decoding Algorithms Operating in the Log Domain,” Proc. of ICC ’95,
Seattle, Washington, June 1995, pp. 1009-1013.

PROBLEMS

8.1. Determine which if any of the following polynomials are primitive. Hint: One of the
casiest way is with the use of an LFSR, similar to the one shown in Figure 8.8.

a)
b)
¢)
d)
e)
f

g
h)

i)
8.2. a)
b)
©)

d)
8.3. a)

b)
¢)
d)
€e)

1+X*+ Xx°

1+X+ X2+ X3

1+X%+x*

1+X*+ x*

1+X+ X+ X+ Xx*

1+X+X°

L+ X2+ X°

1+ X+ X°

1+ X4+ X°

What is the symbol-error correcting capability of a (7, 3) R-S code? How many
bits are there per symbol?

Compute the number of rows and columns in the standard array (see Section
6.6) required to represent the (7, 3) R-S code in part a).

Use the dimensions of the standard array in part b) to corroborate the symbol-
error correcting capability found in part a).

Is the (7, 3) R-S code a perfect code? If not, how much residual symbol-error
correcting capability does it have?

Define a set of elements {0, o”, o', 0% . .., o®” =2} in terms of basis elements from
the finite field GF (2), where m = 4.

For the finite field defined in part a), develop an addition table similar to Table 8.2.
Develop a multiplication table similar to Table 8.3.

Find the generator polynomial for the (31, 27) R-S code.

Encode the message {96 leading zeros followed by 110010001111} (rightmost bit
is earliest) with the (31, 27) R-S code in systematic form. Why do you suppose
the message was configured with so many leading zeros?

8.4. Use the generator polynomial for the (7, 3) R-S code to encode the message
010110111 (rightmost bit is earliest bit) in systematic form. Use polynomial division
to find the parity polynomial, and show the resulting codeword in polynomial form
and in binary form.

8.5. a)
b)

8.0. a)

b)

Problems

Use a LFSR to encode the symbols {6, 5, 1} (rightmost symbol is the earliest) with
a (7,3) R-S code in systematic form. Show the resulting codeword in binary form.
Verify the encoding results from part a) by evaluating the codeword polynomial
at the roots of the (7, 3) R-S generator polynomial, g(X).

Suppose that the codeword found in Problem 8.5 was degraded during transmis-
ston, so that its rightmost 6 bits are inverted. Find the value of each syndrome by
evaluating the flawed codeword polynomial at the roots of the generator polyno-
mial g(X).

Verify that the same syndrome values found in part a) can be found by evaluat-
ing the error polynomial, e(X), at the roots of g(X).

513



8.7.

8.8.

8.9.

8.10.

811

8.12,

8.13.

514

a) Use the autoregressive model in Equation (8.40) with the flawed codeword from
Problem 8.6 to find the location of each symbol error.

b) Find the value of each symbol error.

¢) Use the information found in parts a) and b) to correct the flawed codeword.

The sequence 1011011000101100 is the input to a 4 x 4 block interleaver. What is the

output sequence? The same input sequence is applied to the convolutional inter-

leaver of Figure 8.13. What is the output sequence?

For each of the following conditions, design an interleaver for a communication system

operating over a bursty noise channel at a transmission rate of 19.200 code symbols/s.

a) A contiguous noise burst typically lasts for 250 ms. The system code consists of a
(127, 36) BCH code with d,;, = 31. The end-to-end delay is not to exceed 5 s.

b) A contiguous noise burst typically lasts for 20 ms. The system code consists of a
rate # convolutional code with a feedback decoding algorithm that corrects an
average of 3 symbols in a sequence of 21 symbols. The end-to-end delay is not to
exceed 160 ms.

a) Calculate the probability of a byte (symbol) error after decoding the data stored
on a compact disc (CD) as described in Section 8.3. Assume that the probability
of a channel-symbol error for the disc is 10, Also assume that the inner and
outer R-S decoders are each configured to correct all 2-symbol errors. and that
the interleaving process results in channel symbol errors being uncorrelated from
one another.

b) Repeat part a) for a disc that has a probability of channel-symbol error equal
to 1072

A BPSK system receives equiprobable bipolar symbols (+1 or —1) plus AWGN. As-

sume unity noise variance. At time ., the value of the received signal x; isequal to 0.11.

a) Calculate the two likelihood values for this received signal.

b) What would be the maximum a posteriori decision, +1 or —1?

¢) The a priori probability that the transmitted symbol was +1 is equal to 0.3. What
would be the maximum a posteriori decision, +1 or —1?

d) Assuming the a priori probabilities from part c). calculate the log-likelihood
ratio L(dy| xy).

Consider the two-dimensional parity-check code example described in Section 8.4.3.

As outlined there, the transmitted symbols are represented by the sequence d;. d,,

ds, dy, P12, D3as P13, Pos, TESUlting in a code rate of 1/2. A particular application requir-

ing a higher data rate allows the output sequence from this code to be punctured by
discarding every other parity bit, resulting in an overall code rate of 2/3. The trans-
mitted output is now given by the sequence d,, d,, ds, dy. P1a. _, P13 _ (parity bits py,
and p,, are not transmitted). The transmitted sequence is {d}. {p;} = +1 -1 =1 +1 +1
+1, where { and j are location indices. The noise transforms this data plus parity se-

quence into the received sequence {x,} = 0.75, 0.05, 0.10, 0.15. 1.25, 3.0, where k is a

time index. Calculate the values of the soft outputs for the data bits after two hori-

zontal and two vertical decoding iterations. Assume unity noise variance.

Consider the parallel concatenation of two RSC component encoders as shown in

Figure 8.26. An interleaver of block size 10, maps a sequence of input bits {d,]} to bits

{d’} where the interleaver permutation is given by [6, 3. 8. 9,5, 7. 1. 4,10, 2], i.e.. the

1%t bit of the incoming data block is mapped to position 6, the 2™ bit is mapped to po-

sition 3 etc. The input sequence is given by (0,1,1,0,0.1,0, 1, 1. 0). Assume that the

component encoders start in the all-zeros state and that no termination bits are
added to force them back to the all-zeros state.

Channei Coding: Part 3 Chap. 8




a)
b)
)

d)

8.14. a)
b)

©

d)

Calculate the 10-bit parity sequence {v,,}.

Calculate the 10-bit parity sequence {v,}.

The switch yielding the sequence {v,} performs puncturing such that {v,} is given
by the following: vy, Vo 1) Vige+2)» Vo + 305 - - - » and the code rate is 2. Calculate
the weight of the output codeword.

When decoding with the MAP algorithm, what changes do you think need to be
made with regard to initializing the state metrics and branch metrics, if the en-
coders are left unterminated?

For the nonrecursive encoder shown in Figure P8.1, calculate the minimum dis-
tance of the overall code.

For the recursive encoder shown in Figure 8.26, calculate the minimum distance
of the overall code. Assume that there is no puncturing, so that the code rate is .
For the encoder shown in Figure 8.26, discuss the effect on the output code
weight if the input to each component encoder is given by the weight-2 sequence
(00...00100100 . ..00) (Assume no puncturing).

Repeat part ¢) for the case where the weight-2 sequence is given by (00 ...
0010100.. . . 00).

8.15. Consider that the encoder in Figure 8.25a is used as a component code within a turbo
code. Its 4-state trellis structure is shown in Figure 8.25b. The code rate is % and the
branch labeling, u v, represents the output branch word (code bits) for that branch,
where u is a data bit (systematic code) and v is a parity bit, and at each time k, a data
bit and parity bit are transmitted. Signals received from a demodulator have the
noise-disturbed u, v values of 1.9, 0.7 at time k = 1, and —0.4, 0.8 at time k = 2. As-
sume that the a priori probability for the data bit being a 1 or 0 is equally likely and
that the encoder begins in the all-zeros state at starting time k = 1. Also assume that
the noise variance is equal to 1.3. Recall that a data sequence of N bits is character-

{dp} {upl

Problems

—>| dp I'—>|dk-1l_>ldk—2]

+ {v1e}
Interleaverl ~
() i

(H—(+

dl

() {var)

Figure P8.1 Encoder with non-recursive component codes.

515



8.16.

8.17.

516

ized by N transition-time intervals and N + 1 states (from start to finish). Thus. for

this example, bits are launched at times k = 1, 2, and we are interested in the state

metrics at times k=1, 2, 3.

a) Calculate the branch metrics for times & = 1 and & = 2. that are needed for using
the MAP algorithm.

b) Calculate the forward state metrics for times k= 1. 2. and 3.

¢) The values of the reverse state metrics at times k = 2 and 3 are given below in
Table P8.1 for each valid state. Based on the values in the table and the values
calculated in parts a) and b) calculate the values for the log-likelihood ratio asso-
ciated with the data bits at time k = 1 and k = 2. Use the MAP decision rule to
find the most likely data bit sequence that was transmitted.

TABLE P8.1

B k=2 k=3
m=a 4.6 2.1
m=b 24 11.5
m=c 5.7 34
m=d 4.3 0.9

Suppose the received sequence obtained in Problem 8.15 is in fact for a rate 3 code
which is obtained by puncturing the rate 2 code (defined by the trellis in Figure
8.25b). The puncturing is such that only every second parity bit generated is trans-
mitted. Therefore the four-signal sequence received represents data symbol, parity
symbol, data symbol, data symbol. Calculate the branch metrics and forward state
metrics for times k = 1 and k = 2 that would be needed for using the MAP algorithm.

The trellis for a four-state code used as a component code within a turbo code is
shown in Figure 8.25b. The code rate is 3 and the branch labeling. 1 v represents the
output, branch word (code bits) for that branch, where u is a data bit (systematic
code) and v is a parity bit. A block of N = 1024 samples are received from a demodu-
lator. Assume that the first signals in the block arrive at time k = 1. and at each time
k, a noisy data bit and parity bit is received. At time k = 1023. the received signals
have noisy u, v values of 1.3, -0.8, and at time k = 1024, the values are —1.4. -0.9. As-
sume that the a priori probability for the data bit being a 1 or 0 is equally likely and
the encoder ends in a state @ = 00 at termination time & = 1025. Also, assume that the
noise variance is equal to 2.5.
a) Calculate the branch metrics for time k£ = 1023 and k = 1024.
b) Calculate the reverse state metrics for time k = 1023, 1024, and 1025.
¢) The values of the forward state metrics at time k = 1023 and k = 1024 are given
below in Table P8.2 for each valid state. Based on the values in the table and the
values calculated in parts a) and b) calculate the values for the likelihood ratio
associated with the data bits at time k& = 1023 and k = 1024, and using the MAP
decision rule, find the most likely data bit sequence that was transmitted.

TABLE P8.2

o’} k=1023 k =1024
m=a 6.6 12.1
m=b 7.0 1.5
m=c 472 13.4
m=d 4.0 5.9

Channel Coding: Part 3 Chap. 8




8.18. Given two statistically independent observations of a noisy signal x; and x,, prove
that the log-likelihood ratio (LLR) L{d | x;, x,) can be expressed in terms of individ-
ual LLRs as

L(d|xy,x;) = L(xy|d) + L(x;|d) + L(d)

where L(d) is the a priori LLR of the underlying data bit d.

8.19. a) Using Bayes’ theorem, show the detailed steps that transform o} in Equation
(8.129) to Equation (8.130b). Hint: Use a simple lettering scheme as is used in
Equations (8.121) and (8.122).

b) Explain how the summation over the states m’ in Equation (8.130a) results in the
expression seen in Equation (130b).

¢) Repeat part a) to show in detail how Equation (8.133) evolves to Equation
(8.135). Also explain how the summation over the states m’ at the future time
k + 1 results in the form of Equation (8.135).

8.20. Starting with Equation (8.139) for the branch metric 8}, show the detailed develop-
ment resulting in Equation (8.140), and indicate which terms can be identified as the
constant A, in Equation (8.140). Why does the A; term disappear in Equation
(8.141a)?

8.21. The interleaver in Figure 8.27 (identical to the interleaver in the corresponding en-
coder) is needed to insure that the sequence out of DECI is time ordered in the
same way as the sequence {y,,} Can this be implemented in a simpler way? What
about using a deinterleaver in the lower line? Wouldn’t that accomplish the same
time ordering more simply? If we did that, then the two deinterleavers, just prior to
the output, could be eliminated. Explain why that would not work.

8.22. In the implementation of the Viterbi decoding algorithm, an add-compare-select
(ACS) processor is used. But, in performing the maximum a posteriori (MAP) algo-
rithm in turbo decoding, there is no such concept as comparing and selecting one
transition over another. Instead the MAP algorithm incorporates all of the branch
and state metrics at each time interval. Explain the reason for this fundamental dif-
ference between the two algorithms.

8.23. Figure P8.2 illustrates a recursive systematic convolutional (RSC) rate 3, K =4, en-
coder. Note that the figure uses the format of 1-bit delay blocks rather than storage
stages (see Section 8.4.7.4). Thus, the current state of this circuit can be described by

{dp} o {ug}

ar

K,/ o {vp)

Figure P8.2 Recursive systematic convolutional (RSC) encoder,
rate 2, K= 4.

Problems 517




8.24.

8.25.

518

{dirl J J > {d1e}
{dog} ¢ > {dap)
D D {vg}

Figure P8.3 Recursive systematic convolutional {(RSC) encoder, rate
%3, K=3.

the signal levels at points a, _ 1, a; ,, and a; _s, similar to the way a state is described
in the format using storage stages. Form a table, similar to Table 8.5 that describes
all possible transitions in this circuit, and use the table to draw a trellis section.

Figure P8.3 illustrates a recursive systematic convolutional (RSC) rate 5. K=3, en-
coder. Note that the figure uses the format of 1-bit delay blocks rather than storage
stages (see Section 8.4.7.4). Form a table, similar to Table 8.5 that describes all possi-
ble transitions in this circuit, and use the table to draw a trellis section. Use a table.
similar to Table 8.6 to find the output codeword for the message sequence
1100110011. At each clock time, data bits enter the circuit in pairs {dy;, dy}, and each
output branch word {d,,, dy., v} is made up of that pair of data bits plus one parity
bit, v,.

Consider a turbo code consisting of two, four state convolutional codes as the com-
ponent codes, both of which are described by the same trellis as shown in Figure
8.25b. The code rate is equal to % and the block length is equal to 12. The second en-
coder is left unterminated. The branch metrics, forward state metrics, and reverse
state metrics for the data bits associated with the terminated encoder are described
by the matrices that follow. The received 12-signal vector is of the form data signal,
parity signal, data signal, parity signal, and so forth, and has the following values:

12 13 =12 06 -04 19 —-07 —-19 -22 02 —-0.1 06

Branch 8™ matrix

[8%a g2e¢ ... 32« [1.00 1.00 1.00 1.00 1.00 1.00]
Bhe T b 349 074 212 027 037 128
L 1.00 1.00 1.00 1.00 1.00 1.00
o | BEE T T 1349 074 212 027 037 128
oo lebe e 1192 135 259 039 111 1.35
spe . T 182 055 082 070 033 095
U 192 135 259 039 111 135
| 3k¢ o o 3p4] 182 055 082 070 033 095

Channel Coding: Part 3 Chap. 8




Alpha (af) matrix

W of - af| [100 100 100 505 854 1041 2445
oo led o o 000 000 192 1279 507 1093 3148
M Zlae o 0 | T|000 349 074 403 1416 822 2430
o o o] |000 000 471 577 563 1753 2776

Bera (B}) matrix

T 5 g 2445 544 283 112 1.00 1.00 1.00

1 2 7
. B bl 12443 562 317 070 037 128 0.00
¢ B - . : 2132 545 353 0.81 043 0.00 0.00

4 e 2131 579 275 114 142 0.00 0.00

Calculate the log-likelihood ratio for each of the six data bits {d,}, and by using the
MAP decision rule, find the most likely data-bit sequence that was transmitted.

QUESTIONS

8.1.

8.2.

8.3.

8.4.

8.5.

8.6.

8.7.

8.8.
8.9.

Explain why R-S codes perform so well in a bursty-noise environment. (See Section
8.1.2)

Explain why the curves in Figure 8.6 of the text show error-performance degradation
at low values of code rate. (See Section 8.1.3.)

Considering all the ways that there are to determine whether a polynomial is primi-
tive, the method involving a linear feedback shift register (LFSR) is one of the sim-
plest. Explain the procedure. (See Example 8.2.)

Explain why a syndrome can be calculated by evaluating the received polynomial at
each of the roots of the code’s generator polynomial. (See Section 8.1.6.1.)

What key transformation does an interleaver/deinterleaver system perform on
bursty noise? (See Section 8.2.1.)

Why is the Shannon limit of 1.6 dB not a useful goal in the design of real systems?
(See Section 8.4.5.2.)

What are the consequences of the Viterbi decoding algorithm not yielding a posteri-
ori probabilities? (See Section 8.4.6.)

What is a more descriptive name for the Viterbi algorithm? (See Section 8.4.6.)
Describe the similarities and differences between implementing a Viterbi decoding
algorithm and implementing a maximum a posteriori (MAP) decoding algorithm?
(See Section 8.4.6.)

EXERCISES

Using the Companion CD, run the exercises associated with Chapter 8.

Exercises 519



