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diagram shows that if the first input bit is a zero, the output branch word is 00 and,
if the first input bit is a one, the output branch word is 11. Similarly, if the first
input bit is a one and the second input bit is a zero, the second output branch word
is 10. Or, if the first input bit is a one and the second input bit is a one, the second
output branch word is 01. Following this procedure we see that the input sequence
11011 traces the heavy line drawn on the tree diagram in Figure 7.6. This path
corresponds to the output codeword sequence 1101010001.

The added dimension of time in the tree diagram (compared to the state dia-
gram) allows one to dynamically describe the encoder as a function of a particular
input sequence. However, can you see one problem in trying to use a tree diagram
for describing a sequence of any length? The number of branches increases as a
function of 2%, where L is the number of branch words in the sequence. You would
quickly run out of paper, and patience.

7.2.4 The Trellis Diagram

Observation of the Figure 7.6 tree diagram shows that for this example, the struc-
ture repeats itself at time ¢,, after the third branching (in general, the tree structure
repeats after K branchings, where K is the constraint length). We label each node in
the tree of Figure 7.6 to correspond to the four possible states in the shift register,
as follows: @ = 00, b = 10, ¢ = 01, and d = 11. The first branching of the tree struc-
ture, at time f;, produces a pair of nodes labeled a and b. At each successive
branching the number of nodes double. The second branching, at time #,, results in
four nodes labeled g, b, ¢, and d. After the third branching, there are a total of eight
nodes: two are labeled a, two are labeled b, two are labeled ¢, and two are labeled
d. We can see that all branches emanating from two nodes of the same state gener-
ate identical branch word sequences. From this point on, the upper and the lower
halves of the tree are identical. The reason for this should be obvious from exami-
nation of the encoder in Figure 7.3. As the fourth input bit enters the encoder on
the left, the first input bit is ejected on the right and no longer influences the output
branch words. Consequently, the input sequences 100 xy...and000xy...,
where the leftmost bit is the earliest bit, generate the same branch words after the
(K = 3)rd branching. This means that any two nodes having the same state label at
the same time 7, can be merged, since all succeeding paths will be indistinguishable.
If we do this to the tree structure of Figure 7.6, we obtain another diagram, called
the trellis diagram. The trellis diagram, by exploiting the repetitive structure, pro-
vides a more manageable encoder description than does the tree diagram. The trel-
lis diagram for the convolutional encoder of Figure 7.3 is shown in Figure 7.7.

In drawing the trellis diagram, we use the same convention that we intro-
duced with the state diagram—a solid line denotes the output generated by an
input bit zero, and a dashed line denotes the output generated by an input bit one.
The nodes of the trellis characterize the encoder states; the first row nodes corre-
spond to the state a = 00, the second and subsequent rows correspond to the states
b =10, ¢ =01, and d = 11. At each unit of time, the trellis requires 2X~ ! nodes to
represent the 2% ~' possible encoder states. The trellis in our example assumes a
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7.3 FORMULATION OF THE CONVOLUTIONAL
DECODING PROBLEM

7.3.1 Maximum Likelihood Decoding

If all input message sequences are equally likely, a decoder that achieves the mini-
mum probability of error is one that compares the conditional probabilities, also
called the likelihood functions P(Z|U"™), where Z is the received sequence and
U" is one of the possible transmitted sequences, and chooses the maximum. The
decoder chooses U™ if

P(Z|U"™)) = max P(Z|U"™)

over all U™ (7.1)

The maximum likelihood concept, as stated in Equation (7.1), is a fundamental
development of decision theory (see Appendix B); it is the formalization of a
“common-sense” way to make decisions when there is statistical knowledge of the
possibilities. In the binary demodulation treatment in Chapters 3 and 4 there were
only two equally likely possible signals, s,(¢) or s,(¢), that might have been transmit-
ted. Therefore, to make the binary maximum likelihood decision, given a received
signal, meant only to decide that s,(r) was transmitted if

pzlsy) > p(zlsz)

otherwise, to decide that s,(r) was transmitted. The parameter z represents z(7),
the receiver predetection value at the end of each symbol duration time ¢ = 7. How-
ever, when applying maximum likelihood to the convolutional decoding problem,
we observe that the convolutional code has memory (the received sequence repre-
sents the superposition of current bits and prior bits). Thus, applying maximum
likelihood to the decoding of convolutionally encoded bits is performed in the con-
text of choosing the most likely sequence, as shown in Equation (7.1). There are
typically a mulritude of possible codeword sequences that might have been trans-
mitted. To be specific, for a binary code, a sequence of L branch words is a member
of a set of 2* possible sequences. Therefore, in the maximum likelihood context, we
can say that the decoder chooses a particular U™ as the transmitted sequence if
the likelihood P(Z|U"") is greater than the likelihoods of all the other possible
transmitted sequences. Such an optimal decoder, which minimizes the error proba-
bility (for the case where all transmitted sequences are equally likely), is known as
a maximum likelihood decoder. The likelihood functions are given or computed
from the specifications of the channel.

We will assume that the noise is additive white Gaussian with zero mean and
the channel is memoryless, which means that the noise affects each code symbol
independently of all the other symbols. For a convolutional code of rate 1/n, we
can therefore express the likelihood as

o fl

P@U™) = TIP(Z U = T] TTP(duty) (72)

i=1 i=1 j=1
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one stage deeper, and again compute eight metrics, this time from t, through ¢,.
Having decoded the first two code symbols, we now slide over two code symbols to
the right and again compute the path metrics for six code symbols. This takes place
in the block marked B in Figure 7.25. Again, listing the metrics from top path to
bottom path, we find that they are

Upper-half metrics: 2,4, 3,3

Lower-half metrics: 3,1, 4,4

For the assumed received sequence, the minimum metric is found in the lower half
of block B. Therefore, the second decoded bit is one.

The same procedure continues until the entire message is decoded. The
decoder is called a feedback decoder because the detection decisions are fed back
to the decoder in determining the subset of code paths that are to be considered
next. On the BSC, the feedback decoder can perform nearly as well as the Viterbi
decoder [17] in that it can correct all the more probable error patterns, namely all
those of weight (d; — 1)/2 or less, where d; is the free distance of the code. An
important design parameter for feedback convolutional decoders is L, the look-
ahead length. Increasing L increases the coding gain but also increases the decoder
implementation complexity.

7.6 CONCLUSION

In the last decade, coding emphasis has been in the area of convolutional codes
since in almost every application, convolutional codes outperform block codes for
the same implementation complexity of the encoder—decoder. For satellite commu-
nication channels, forward error correction techniques can easily reduce the
required SNR for a specified error performance by 5 to 6 dB. This coding gain
can translate directly into an equivalent reduction in required satellite effective
radiated power (EIRP), with consequently reduced satellite weight and cost.

In this chapter we have outlined the essential structural difference between
block codes and convolutional codes—the fact that rate 1/n convolutional codes
have a memory of the prior K — 1 bits, where K is the encoder constraint length.
With such memory, the encoding of each input data bit not only depends on the
value of that bit but on the values of the K - 1 input bits that precede it. We pre-
sented the decoding problem in the context of the maximum likelihood algorithm,
examining all the candidate codeword sequences which could possibly be created
by the encoder, and selecting the one that appears statistically most likely; the deci-
sion is based on a distance metric for the received code symbols. The error perfor-
mance analysis of convolutional codes is more complicated than the simple
binomial expansion describing the error performance of many block codes. We laid
out the concept of free distance, and we presented the relationship between free
distance and error performance in terms of bounds. We also described the basic
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idea behind sequential decoding and feedback decoding and showed some compar-
ative performance curves and tables for various coding schemes.
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PROBLEMS

?I 1#

7.2

7.3.

74.

Draw the state diagram, tree diagram, and trellis diagram for the K = 3, rate 1 code
generated by

g(X) =X+ X°
g.,(X) =14+ X
giX) =1+ X+ X?

Given a K = 3, rate 3, binary convolutional code with the partially completed state
diagram shown in Figure P7.1, find the complete state diagram and sketch a diagram
for the encoder.

Draw the state diagram, tree diagram, and trellis diagram for the convolutional
encoder characterized by the block diagram in Figure P7.2.

Suppose that you were trying to find the quickest way to get from London to Vienna
by boat or train. The diagram in Figure P7.3 was constructed from various schedules.
The tabels on each path are travel times. Using the Viterbi algorithm, find the fastest
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Figure P7.2

route from London to Vienna. In a general sense, explain how the algorithm works,
what calculations must be made, and what information must be retained in the mem-
ory used by the algorithm.

7.5. Consider the convolutional encoder shown in Figure P7.4.

(a) Write the connection vectors and polynomials for this encoder.
(b) Draw the state diagram, tree diagram, and trellis diagram.

7.6. What is the impulse response of the encoder of Problem 7.57 Using the impulse

response, determine the output sequence when the input is 1 0 1. Verity by using
the generator polynomials.

7.7. Does the encoder of Problem 7.5 exhibit the properties of catastrophic error

propagation? Justify your answer with an example.

7.8. Find the free distance of the encoder of Problem 7.3 by the transfer function method.
7.9. Let the codewords of a coding scheme be

a=000000
b=101010
c=010101
d=111111

If the received sequence over a binary symmetric channel is 1 11 01 0 and a
maximum likelihood decoder is used, what will be the decoded symbol?

7.10. Consider that the K = 3, rate 5 encoder of Figure 7.3 is used over a binary symmetric

432

channel (BSC). Assume that the initial encoder state is the 00 state. At the output of
the BSC, the sequence Z=(110000101 1 rest all “0”) is received.

London 10 Amsterdam 9 MuEich 8 Vienna

Fa

Paris 8 Basel Figure P7.3
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Figure P7.4

(a) Find the maximum likelihood path through the trellis diagram, and determine
the first 5 decoded information bits. If a tie occurs between any two merged
paths, choose the upper branch entering the particular state.

(b) Identify any channel bits in Z that were inverted by the channel during
transmission.

7.11. Determine which of the following rate ; codes are catastrophic.
(a) g(X)=X, gX)=1+X+X
b) g(X)=1+X gX)=1+X°
(©) g(X)=1+X+X2, g(X)=1+X+X+X*
dgX)=1+X+X+X', gX)=1+X+Xx*
() g(X)=1+X'"+X"+X", gX)=1+X+X*
M g(X)=1+X+X", gX)=1+X+X+X*

7.12. (a) Consider a coherently detected BPSK signal encoded with the encoder shown in
Figure 7.3. Find an upper bound on the bit error probability, Py, if the available
E,/Nyis 6 dB. Assume hard decision decoding.
(b) Compare Py with the uncoded case and calculate the improvement factor.
7.13. Using sequential decoding, illustrate the path along the tree diagram shown in
Figure 7.22 when the received sequence is0 111000 11 1. The backup criterion
is three disagreements.

7.14. Repeat the decoding example of Problem 7.13 using feedback decoding, with a look-
ahead length of 3. In the event of a tie, select the upper half of the tree.

Input — "E"'—o Output

Figure P7.5
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diagram to decode the first three data bits. Assume that the encoder had started in
the 00 state, and that the decoding process is perfectly synchronized.

QUESTIONS

Tl-li

In convolutional encoding, why is flushing of the register periodically performed?
(See Sections 7.2.1 and 7.3.4.)

7.2. Define what is meant by the state of a machine. (See Section 7.2.2.)

7.3. What is a finite-state machine? (See Section 7.2.2.)

7.4. What arc soft decisions, and how much greater complexity is there in the process
of soft-decision Viterbi decoding as compared with hard decision decoding? (Sece
Sections 7.3.2 and 7.4.8.)

7.5. What is another (descriptive) name for a binary symmetric channel (BSC)? (See
Section 7.3.2.1.)

7.6. Describe the Add-Compare-Select (ACS) computations performed in the process of
Viterbi decoding. (See Section 7.3.5.)

7.7. On a trellis diagram, an error is associated with a surviving path that diverges from,
and then remerges to the correct path. Why is it necessary for the path to remerge?
(See Section 7.4.1.)

EXERCISES

Using the Companion CD, run the exercises associated with Chapter 7.
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